
Natural X
Version 5.1.1 for Windows
Version 3.1.6 for OS/390
Version 5.1.1 for UNIX

This document applies to Natural Version 5.1.1 for Windows, Version 3.1.6 for OS/390, Version 5.1.1 for UNIX
and to all subsequent releases. Specifications contained herein are subject to change and these changes will be
reported in subsequent release notes or new editions.

© June 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents
................... 1NaturalX - Overview
.................. 1NaturalX - Overview
.................. 2Introduction to NaturalX
.................. 2Introduction to NaturalX
................... 2Why NaturalX?
................. 3Programming Techniques
................ 3Object-Based Programming
.................. 3Defining Classes
.................. 3Defining Interfaces
................. 4Interface Inheritance
................... 5Installing NaturalX
................... 5Installing NaturalX
............ 5Installing NaturalX under Windows 98/NT/2000
............... 5Installing NaturalX under UNIX
................... 5Prerequisites
................. 6Installation Procedure
............. 7NaturalX System Architecture under OS/390
.................... 7Overview
................. 10Environment Variables
................ 15NaturalX Server Front-End
................. 15NaturalX Output Files
............... 16The NaturalX Server Monitor
................. 16The DCOM Buffer Pool
............... 16Installing NaturalX under OS/390
................ 17Developing NaturalX Applications
............... 17Developing NaturalX Applications
................. 17Using the Class Builder
................... 17Defining Classes
............... 17Creating a Natural Class Module
.................. 17Specifying a Class
................. 18Defining an Interface
........... 18Assigning an Object Data Variable to a Property
.............. 18Assigning a Subprogram to a Method
................. 18Implementing Methods
................. 20Using Classes and Objects
................. 21Defining Object Handles
............... 21Creating an Instance of a Class
............. 21Invoking a Particular Method of an Object
................. 21Accessing Properties
.................. 23Sample Application
............... 23*THIS-OBJECT System Variable
............... 25Distributing NaturalX Applications
............... 25Distributing NaturalX Applications
..................... 25General
.............. 25Internal, External and Local Classes
.............. 26Globally Unique Identifiers - GUIDs
................. 27Using the Class Builder
................ 27Using the Data Area Editor
................... 27NaturalX Servers
................ 28COM Classes and Servers
............... 28NaturalX Classes and Servers
.......... 28NaturalX Servers and Natural Sessions under OS/390
.... 30NaturalX Servers and Natural Sessions under Windows 98/NT/2000 and UNIX

iCopyright © Software AG 2002

Table of ContentsNaturalX - Overview

.................. 30The Role of the Server ID

.................. 32Organizing Server IDs

.................... 33Activation Policies

.......... 33Activation Policies Under Windows 98/NT/2000 and UNIX

................ 34Activation Policies Under OS/390

................. 34Setting Activation Policies

............... 35When to use which Activation Policy

..................... 38Registration

.................. 38Registration with Natural

.................. 38Automatic Registration

................... 39Manual Registration

............... 42Registration Files and Type Library

................... 42Client Registration

................... 43Registration Hints

............. 45DCOMPARM System Command - OS/390 Only

..................... 45server-ID

.................... 45Type Information

..................... 45Overview

................ 46NaturalX and Type Information

.................. 46Using Type Information

................... 49Configuration Overview

............... 49Server Configuration - General Settings

............ 50Server Configuration - Application-Specific Settings

............... 51Client Configuration - General Settings

............ 51Client Configuration - Application-Specific Settings

.................... 51Sample Application

.................... 52Security with NaturalX

................... 52Security with NaturalX

...................... 52Overview

.................... 52Activation Security

.................... 52Applications

................ 53Authorizations using the Registry

..................... 53Call Security

............... 53Authorizations using Natural Security

................ 55Security Hints and Suggestions

................. 56NaturalX Configuration Examples

................. 56NaturalX Configuration Examples

.............. 56DCOM Configuration on Windows NT/2000

............ 57Configuring NaturalX Servers on Windows NT/2000

............ 66Configuring NaturalX Clients on Windows NT/2000

............... 69DCOM Configuration on Windows 98

............. 70Configuring NaturalX Servers on Windows 98

............. 74Configuring NaturalX Clients on Windows 98

......... 77DCOM Configuration on Windows 98 in a Windows NT Domain

....... 78Configuring NaturalX Servers on Windows 98 in a Windows NT Domain

....... 84Configuring NaturalX Clients on Windows 98 in a Windows NT Domain

.............. 87DCOM Configuration on UNIX with EntireX

.............. 87Configuring NaturalX Servers on UNIX

............... 89Configuring NaturalX Clients on UNIX

................ 89DCOM Configuration on OS/390

................. 90NaturalX System Registry Entries

................. 90NaturalX System Registry Entries

.................. 90Registry Entries for Servers

.................. 91Keys Needed by DCOM

.................. 92Keys Needed by Natural

.................. 93Registry Entries for Clients

Copyright © Software AG 2002ii

NaturalX - OverviewTable of Contents

......... 94Using Statements and Commands in a NaturalX Server Environment

......... 94Using Statements and Commands in a NaturalX Server Environment

.................... 94Natural Statements

......... 94DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements

.......... 95WRITE WORK FILE and READ WORK FILE Statements

............... 95STOP and TERMINATE Statements

.................. 95Natural System Commands

..................... 96NaturalX Glossary

.................... 96NaturalX Glossary

.................... 96Activation Policies

...................... 96AppID

....................... 96Class

..................... 96Class GUID

..................... 97Class Name

................... 97Class Module Name

....................... 97COM

..................... 97COM Class

...................... 97DCOM

..................... 98External Class

....................... 98GUID

....................... 98HFS

...................... 98Instance

...................... 98Interface

.................... 99Interface GUID

................... 99Interface Inheritance

..................... 99Internal Class

..................... 99Local Class

...................... 99Method

.................... 99NaturalX Client

.................... 100NaturalX Server

.................... 100Natural Session

....................... 100Object

.................. 100Object Data Area - ODA

................... 100Object Data Variable

...................... 100ProgID

...................... 100Property

...................... 101Registry

..................... 101Registry Key

...................... 101Server ID

.................... 101Type Information

..................... 101Type Library

iiiCopyright © Software AG 2002

Table of ContentsNaturalX - Overview

NaturalX - Overview
The NaturalX documentation contains information required to administer and use NaturalX on all available
platforms.

This documentation covers the following topics:

Introduction to NaturalX

Installing NaturalX

Developing NaturalX Applications

Distributing NaturalX Applications

Security with NaturalX

NaturalX Configuration Examples

NaturalX System Registry Entries

Using Statements and Commands in a NaturalX Server Environment

NaturalX Glossary

For a detailed explanation of the symbols and operands used within the syntax descriptions, see the section
Syntax Symbols and Operand Definition Table.

A document containing a number of frequently asked questions (FAQ) referring predominantly to mainframe
issues with NaturalX is included in the Natural for Mainframes Installation Guide , see the section NaturalX
Trouble Shooting FAQ, or click here if you have access to the mainframe online documentation.

Platform-Specific Information

Wherever necessary, platform-specific information in the present documentation is identified by the following
terms:

Mainframe Refers to the operating systems OS/390, VSE/ESA, VM/CMS and BS2000/OSD, as well as all
TP monitors supported by Natural under these operating systems.

OpenVMS When used in the present NaturalX documentation, the term refers only to the OpenVMS
operating system running on Alpha/AXP systems.

UNIX Refers to all UNIX systems supported by Natural.

Windows Refers to the following operating systems:

In a Natural development environment:

Microsoft Windows NT
Microsoft Windows 2000

In a Natural run-time environment:

Microsoft Windows 98
Microsoft Windows NT
Microsoft Windows 2000

OS/400 Refers to the OS/400 operating system running on AS/400 and iSeries 400 machines. See the
documentation provided on the Natural for OS/400 product CD-ROM.

1Copyright © Software AG 2002

NaturalX - OverviewNaturalX - Overview

Introduction to NaturalX
This section covers the following topics:

Why NaturalX?
Programming Techniques

Why NaturalX?
Software applications that are based on component architecture offer many advantages over traditional designs.
These include the following:

Faster development. Programmers can build applications faster by assembling software from prebuilt
components.
Reduced development costs. Having a common set of interfaces for programs means less work integrating
the components into complete solutions.
Improved flexibility. It is easier to customize software for different departments within a company by just
changing some of the components that constitute the application.
Reduced maintenance costs. In the case of an upgrade, it is often sufficient to change some of the
components instead of having to modify the entire application.
Easier distribution. Components encapsulate data structures and functionality in distributable units.

NaturalX enables you to create and distribute object-based applications. Using Distributed Object technology
(currently DCOM), it enables you to:

allow your components to be accessed by other components,
execute these components on local and/or remote servers,
access components written in a variety of programming languages across process and machine boundaries
from within Natural programs,
provide your existing Natural applications with (quasi) standardized interfaces.

The following scenario illustrates how a company could exploit these advantages. A company introduces a new
sales management system that is based on an application design using components. There are numerous data
entry components in the application, one for each sales point. But all of these sales point use a common tax
calculation component that runs on a server. If the tax legislation is changed, then only the tax component has to
be updated instead of changing the data entry components at each site. In addition, the life of the programmers is
made easier because they do not have to worry about network programming, operating-system compatibility, and
the integration of components that are written in different languages.

Copyright © Software AG 20022

Introduction to NaturalXIntroduction to NaturalX

Programming Techniques
This section covers the following topics:

Object-Based Programming
Defining Classes
Defining Interfaces
Interface Inheritance

Object-Based Programming

NaturalX follows an object-based programming approach. Characteristic for this approach is the encapsulation of
data structures with the corresponding functionality into classes. Encapsulation is a good basis for easy
distribution. Because there are now (quasi) standards for the interoperation of software components on the basis
of object models, an object-based approach is also a good basis for making software components interoperable
across program, machine and programming language boundaries.

Defining Classes

In an object-based application, each function is considered to be a service that is provided by an object. Each
object belongs to a class. Clients use the services either to perform a business task or to build even more complex
services and to provide these to other clients. Hence the basic step in creating an application with NaturalX is to
define the classes that form the application. In many cases, the classes simply correspond to the real things that
the application in question deals with, for example, bank accounts, aircraft, shipments etc. There is a wide range
of good literature about object-oriented design, and a number of well-proven methods can be used to identify the
classes in a given business.

The process of defining a class can be broadly broken down into the following steps:

Create a Natural module of type class.
Specify the name of the class using the DEFINE CLASS statement. This name will be used by the clients to
create objects of that class.
Use the OBJECT clause of the DEFINE DATA statement to define how an object of the class will look
internally. Create a local data area that describes the layout of the object with the data area editor, and
assign this data area in the OBJECT clause.

These steps are described in more detail in the section Developing Object-Based Natural Applications.

Defining Interfaces

In order to be useful to clients, a class must provide services, which it does through interfaces. An interface is a
collection of methods and properties. A method is a function that an object of the class can perform when
requested by a client. A property is an attribute of an object that a client can retrieve or change. A client accesses
the services by creating an object of the class and using the methods and properties of its interfaces.

The process of defining an interface can be broadly broken down into the following steps:

Use the INTERFACE clause to specify an interface name.
Define the properties of the interface with PROPERTY definitions.
Define the methods of the interface with METHOD definitions.

These steps are described in more detail in the section Developing Object-Based Natural Applications.

3Copyright © Software AG 2002

Programming TechniquesIntroduction to NaturalX

Simple classes only have one interface, but a class may have more than one interface. This possibility can be
used to group methods and properties into one interface that belong to the same functional aspect of the class and
to define different interfaces to handle other functional aspects. For example, an Employee class could have an
interface Administration that contains all of the methods and properties of the administrative aspects of an
employee. This interface could contain the properties Salary and Department and the method
TransferToDepartment. Another interface Qualifications could contain the qualification aspects of an employee.

Interface Inheritance

Defining several interfaces for a class is the first step towards using interface inheritance, which is a more
advanced method of designing classes and interfaces. This makes it possible to reuse the same interface
definition in different classes. Assume that there is a class Manager, which is to be treated in the same way as
the class Employee with respect to qualification, but which is to be handled differently as far as administration is
concerned. This can be achieved by having the Qualification interface in both classes. This has the advantage
that a client that uses the Qualification interface on a given object does not have to check explicitly whether the
object represents an Employee or a Manager. It can simply use the same methods and properties without having
to know of what class the object is. The properties or methods can even be implemented in a different way in
both classes provided they are presented through the same interface definition.

The process of using interface inheritance can be broadly broken down into the following steps:

Use the INTERFACE statements to define one or more interfaces in a copycode instead of defining them
directly in the class.
The METHOD and PROPERTY definitions in the INTERFACE statement do not need to contain the IS
clause. At this point, you just define the external appearance of the interface without assigning
implementations to the methods and properties.
Use the INTERFACE clause to include the copycode with its interface definition in each class that will
implement the interface.
Use the METHOD and PROPERTY statements to assign implementations to the methods and properties of
the interface in each class that will implement the interface.

Copyright © Software AG 20024

Introduction to NaturalXInterface Inheritance

Installing NaturalX
This section describes how to install NaturalX and covers the following topics:

Installing NaturalX under Windows 98/NT/2000
Installing NaturalX under UNIX
NaturalX System Architecture under OS/390
Installing NaturalX under OS/390

Installing NaturalX under Windows 98/NT/2000
NaturalX is part of Natural for Windows 98/NT/2000 and is automatically installed with the installation of
Natural for Windows 98/NT/2000.

Installing NaturalX under UNIX
This section describes how to install NaturalX under UNIX.

Prerequisites

Before you begin to install NaturalX under UNIX, ensure that your computer meets the following prerequisites:

EntireX DCOM Version 5.3.1
For access from Windows NT to UNIX:
Windows NT Version 4.0 with Service Pack 6.
Natural 5.1.1 for UNIX

Environment Variables

Make sure that the environment variables for EntireX DCOM have been set according to the EntireX DCOM
documentation.

In order to start up correctly, Natural needs the environment variables NATDIR and NATVERS. To make sure
that these environment variables are also set when a NaturalX server is launched automatically by EntireX
DCOM, NATDIR and NATVERS must also be set in the environment where the ntd daemon (EntireX DCOM)
is started. Set NATDIR to the path where Natural is installed and NATVERS to the name of the Natural version
directory.

5Copyright © Software AG 2002

Installing NaturalXInstalling NaturalX

Installation Procedure

Step 1 - Perform the General Installation Procedure for Software AG Products for
UNIX

For information on this subject, read Installing And Setting Up Software AG Products for UNIX in the Natural
Installation and Operations Manual for OpenVMS and UNIX.

This section contains general information which applies when installing and setting up any Software AG product
on a UNIX platform.

Step 2 - Execute the NaturalX Installation Script

To install NaturalX, you use the installation script "nxxinstall.bsh".

1. Issue the following commands to execute the installation script:

cd $NXXDIR/$NXXVERS/INSTALL.
 /nxxinstall.bsh

2. Follow the instructions provided by the installation script.
A new Natural nucleus with NaturalX support will be linked.
A backup copy of the file "natural" will be created and named "natural.old".

Copyright © Software AG 20026

Installing NaturalXInstallation Procedure

NaturalX System Architecture under OS/390
Before you start to install NaturalX under OS/390, it is important that you have a clear picture of the NaturalX
system architecture under this operating system.

This section covers the following topics:

Overview
Environment Variables
NaturalX Server Front-End
NaturalX Output Files
The NaturalX Server Monitor
The DCOM Buffer Pool

Overview

NaturalX is available for OS/390 (Version 2.4 or above) and requires EntireX DCOM Version 5.2.1 or above. It
uses the OS/390 UNIX Services and must have access to the OS/390 HFS (hierarchical file system). Usability is
restricted to Natural sessions running in batch-oriented systems (TSO, batch and processes in OS/390 UNIX
Services). NaturalX consists of the following four load modules:

NATCOMST resides in a PDS load library. This module is the root entry point for the Natural COM
function and is loaded by the Natural nucleus at session initialization. It provides the nucleus with a list of
the entry points for the APIs in NATCOM.
NATCOM resides in a PDS load library. This module contains the API functionality which enables the
Natural nucleus to call functions in EntireX DCOM.
The load module "naturalx" resides in the HFS and is used by EntireX DCOM to start a NaturalX DCOM
server. NaturalX is a multi-threading application which is able to start and execute multiple Natural sessions
on multiple clients simultaneously. The Natural sessions are executed within a configurable number of
storage threads and the session data is swapped either using the Natural Roll Server or within the virtual
storage. Swapping using virtual storage indeed limits the number of parallel sessions.
The load module "natxmon" resides in the HFS and is used to monitor NaturalX server processes. For
example, NATXMON can be used to terminate a specific NaturalX server process manually.

NaturalX Server

A NaturalX server is a process which is responsible for executing a Natural session which hosts classes, for
further information, see the section Distributing Object-Based Natural Applications. Because mainframe Natural
is a threading system, a NaturalX server on OS/390 is designed as a multi-user application able to maintain
multiple Natural sessions for different clients. A class registered with activation policy ExternalSingle for
example does not have to be hosted by an exclusive process, as it is hosted by an exclusive Natural session.

For sessions hosted by one server process, the following resources are exclusive:

Each session has its own database user ID,
Each session has its own Natural session data (e.g. system variables, DATSIZE, error stack)

For sessions hosted by one server process, the following resources are common:

All sessions run within one OS/390 address space.
All sessions are started with the same session parameters.
All DB2 access calls are made under the user ID of the server process.
Print and work files can either be shared between sessions or be used exclusively by one session. For a
detailed description, see the section Natural as a Server under Natural in Batch Mode in the section
Environment-Specific Information in the Natural Operations for Mainframes documentation.

7Copyright © Software AG 2002

NaturalX System Architecture under OS/390Installing NaturalX

The following diagram gives an overview of the components involved in a NaturalX server environment:

NaturalX Components in a Server Environment

Copyright © Software AG 20028

Installing NaturalXOverview

NaturalX Client

A NaturalX COM client can be any Natural TSO or batch session which uses distributed COM objects. The
following diagram gives an overview of the components involved in a NaturalX client session:

NaturalX Components in a Client Environment

9Copyright © Software AG 2002

OverviewInstalling NaturalX

Environment Variables

The execution of NaturalX is configured using UNIX environment variables. Some of these variables are
required for COM clients, some for COM servers and some for both. The variables mentioned in the EntireX
DCOM documentation must always be set. How the variables are set depends on how you start your Natural
online session or your NaturalX COM server.

Starting Natural under TSO or Batch

If you start a Natural session in TSO or batch, an HFS file must be allocated to the DD name NATXENV. This
HFS file contains the variable assignments.

Example of an HFS File Allocated to NATXENV

PATH=/u/dcomkit/SAG/dco/v411/bin:/u/nat/v311/bin
 LIBPATH=/u/dcomkit/SAG/dco/v411/lib
 _CEE_RUNOPTS=TERMTHDACT(MSG),POSIX(ON),STACK(4M,1M,ANY,KEEP),STORAGE(NONE,NONE,
 NONE,8K),HEAP(32K,32K,ANYWHERE,KEEP,8K,4K)
 SAGNODE=DAEY
 NATDIR=/u/SAG/natural
 NATVERS=v311
 NATX_NUCNAME=NATOS31L
 NATX_NTHREADS=2
 NATX_THREADSZE=300
 NATX_TRACE=1

Example for TSO ISPF procedure

PROC 0
 CONTROL NOFLUSH ASIS LIST CONLIST
 ALLOC FILE(NATXENV) +
 PATH(’/u/SAG/NAT/V311/natxenv’) PATHOPTS(ORDONLY)
 ALLOC FILE(CMPRINT) DA(*)
 ALLOC FILE(CMSYNIN) DA(*)
 ALLOC FILE(SYSOUT) DA(*)
 CALL ’SAG.NAT311.LOAD(NAT31)’

Starting NaturalX Servers Manually

Usually EntireX DCOM launches the NaturalX server automatically if any client requests a server which is
currently not active. It is always possible to start a NaturalX COM server manually under the OS/390 UNIX
shell by executing the executable "naturalx". The variables must be defined in the shell environment from which
you start NaturalX. NaturalX requires the session parameter COMSERVERID=serverid (for OS/390,
DCOM=(SERVID=serverid)).

Example

naturalx "DCOM=(SERVID=MYSERVER)"

It is not possible to start a conventional Natural session as a COM server. A NaturalX COM server must be
started by the executable "naturalx".

Starting NaturalX Servers from EntireX DCOM

If EntireX DCOM (RPCSS) launches the NaturalX COM server, NaturalX inherits the environment variables
from EntireX DCOM. All the environment variables required by NaturalX must be defined in the shell
environment from which EntireX DCOM is started.

Copyright © Software AG 200210

Installing NaturalXEnvironment Variables

List of NaturalX Environment Variables

In the sections below, the characters in brackets indicate whether a variable is required for clients (C), servers (S)
or both (C/S):

DCOLIB - C

Points to the directory in which the standard OLE type library "stdole32.tlb" is stored. "stdole32.tlb" is included
in the type library which is created when a class is registered.

Example for EntireX DCOM 5.2.2

DCOLIB="/EXXDIR/EXXVERS/lib"

NATDIR - C/S

Points to the Natural HFS root directory.

Example

NATDIR=/u/SAG/natural/

NATVERS - C/S

Specifies the version-dependent subdirectory of NATDIR.

Example

NATVERS=v311

NATX_DELAY

Usually a COM server terminates if the number of objects hosted is zero. NATX_DELAY is used to delay server
termination.

Examples

NATX_DELAY=30S causes termination delay of 30 seconds
 NATX_DELAY=10M causes termination delay of 10 minutes
 NATX_DELAY=1H causes termination delay of 1 hour
 NATX_DELAY=INFINITE causes no termination

11Copyright © Software AG 2002

Environment VariablesInstalling NaturalX

NATX_DYNALLOC

Specifies DD name allocations for NaturalX servers by defining a list of DD names which are allocated to
datasets.

dd-name DD name with max. 8 characters (for example SYSUDUMP)

hfs-filename hfs file name with absolute path definition

dataset-nameexisting and catalogued dataset name

output-class single character JES output class

Example

NATX_DYNALLOC="CMPRINT,HFS=/u/tmp/myfile:SYSUDUMP,PDS=NAT.DUMP.F01:CMPRT01,SYSOUT=X"

NATX_DYNALLOC allocates the DD name

CMPRINT to HFS file ’myfile’ on directory /u/tmp
SYSUDUMP to dataset NAT.DUMP.F01
CMPRT01 to output class X.

NATX_FEOPT - S

Specifies additional options for the Natural front-end as follows:

01 Do not use the roll server

02 Clean up roll file at server termination

Example

NATX_FEOPT=01

NATX_FEPRM

Specifies additional Natural Front-End parameters as specified in the Startup Parameter Area. You can define
multiple parameters. Each parameter is specified by a pair of 8-character strings of which the first contains the
parameter keyword and the second, the parameter value. For further information, see the Natural Operations for
Mainframe documentation, section Environment-Specific Information, section Natural in Batch Mode.

Example

NATX_FEPRM="MSGCLASSX"

This setting determines that the default output class for CMPRINT is "X".

Copyright © Software AG 200212

Installing NaturalXEnvironment Variables

NATX_INITTOUT

Specifies the number of seconds the client must wait until the launched NaturalX server is initialized. The default
value is 10.

Example

NATX_INITTOUT=5

The client waits at most 5 seconds until the server is initialized.

The error message NAT0711 with the DCOM code 8004100C occurs if the timeout limit is reached.

NATX_NTHREADS - S

The number of physical storage threads to be allocated by the Natural front-end. The number of sessions which
can be executed in parallel.

Note:
This number does not limit the number of sessions within the server, but the number of sessions which can
be in execution status concurrently. The number of sessions is limited by the size of the Natural swap
medium.

Example

NATX_NTHREADS=5

13Copyright © Software AG 2002

Environment VariablesInstalling NaturalX

NATX_NUCNAME - S

The name of the Natural front-end to start a Natural session. The front-end resides on a PDS member. For further
information, see the section NaturalX Server Frontend.

Example

NATX_NUCNAME=NAT311SV

NATX_THREADSZE - S

The size (in KB) of each physical storage thread which contains the Natural session data at execution time.

Example

NATX_THREADSZE=800

NATX_TRACE - S

Defines the trace level of the server. The value is used as an 8 X 4-bit flag container in which each 4-bit segment
controls the trace of a particular NaturalX functional unit.

Segment Description

1 - 5 Not used.

6 Controls the trace output of NATCOM client calls.

7 Controls the trace output of server calls

8 Controls the trace output of the NaturalX front-end stub.

A segment consists of four bits where the first bit is currently not used. The value of a segment can thus be in the
range 0 - 7. The higher the value, the more extensive the trace output.

Copyright © Software AG 200214

Installing NaturalXEnvironment Variables

Example

NATX_TRACE=0x00000172

This setting determines a level 1 trace for client calls, a level 7 trace for server calls and a level 2 trace for the
NaturalX font-end stub.

PATH - C/S

Refers to the DCOM and Natural bin directory. For further information, see your OS/390 documentation.

Example

PATH=/u/SAG/dco/bin:u/SAG/nat/bin

STEPLIB - S

Refers to the PDS where the Natural front-end is installed. For further information, see your OS/390
documentation.

Example

STEPLIB="RZ.NAT311.LOAD"

Note:
The PDS load libraries defined in the STEPLIB environment variable must be defined in the ’system
sanction list for set-user-id and set-group-id programs’. The ’system sanction list’ is a HFS file containing
the dataset names available for processes which are invoked under a different user-ID. For more
information on the ’system sanction list’, see the description of the statement STEPLIBLIST in the IBM
manual OS/390 V2R4.0 OpenEdition Planning.

NaturalX Server Front-End

The NaturalX server front-end is a standard MVS batch driver which is assembled with the NTOS parameter
LE370=POSIX. The same applies to the TSO driver if you execute COM requests within your TSO Natural
online session.

NaturalX Output Files

For tracing purposes NaturalX allocates three output files for each COM server ID and three output files for each
client user ID. The files can be found under:

NATDIR/NATVERS/trace/server/ serverid. trc the stub trace file
 / serverid . sto the stub stdout file
 / serverid. ste the stub stderr file

and

NATDIR/NATVERS/trace/client/ userid . trc the stub trace file
 / userid. sto the stub stdout file
 / userid . ste the stub stderr file

The stdout and stderr files for clients do not exist if the client session is hosted by a COM server (that is, a COM
server session becomes an agent). In that case the output of stderr and stdout is directed to the appropriate server
file. The output files are always removed at server/client initialization.

15Copyright © Software AG 2002

NaturalX Server Front-EndInstalling NaturalX

The NaturalX Server Monitor

The server monitor "natxmon" can be used to send messages to a specific NaturalX server process via standard
UNIX message queues in order to administer a server process without using COM. "natxmon" is used from the
OS/390 UNIX shell with the following two parameters:

natxmon pid message

Parameter Description

pid Contains the process ID of the server process.

message Contains one of the following numeric values:

1. The server writes status information to the trace file.
2. The server deregisters and terminates.
3. The server aborts.

Example

natxmon 4711 2

This setting terminates the NaturalX server with the PID 4711.

The DCOM Buffer Pool

The COM implementation is based on VTABLES (virtual function tables) which contain lists of entry points
which are used to call the object methods. A VTABLE is not relocatable because its address itself identifies a
specific class object. Natural collates all VTABLES within a DCOM buffer pool. The allocation is similar to
already existing Natural buffer pools, for example, the Sort and Editor buffer pools. A new buffer pool type
DCOM has been introduced. For further information, see the BPI parameter documentation. The buffer pool type
DCOM can be either local or global.

Installing NaturalX under OS/390
Installing NaturalX under OS/390 is described in the Natural Installation Guide for Mainframes.

Copyright © Software AG 200216

Installing NaturalXInstalling NaturalX under OS/390

Developing NaturalX Applications
The first step in creating a Natural application that utilizes the advantages of distributed object computing is to
develop the code, which is then distributed in the second step. This section tells you how to develop an
application by defining and using classes.

This section covers the following topics:

Using the Class Builder
Defining Classes
Using Classes and Objects
*THIS-OBJECT System Variable

Using the Class Builder
On Windows NT and Windows 2000, Natural provides the Class Builder as the tool to develop Natural classes.
The Class Builder shows a Natural class in a structured hierarchical order and allows the user to manage the
class and its components efficiently. If you use the Class Builder, no knowledge or only a basic knowledge of the
syntax elements described in the section Defining Classes is required. On other platforms, you develop classes
using the Natural Program Editor. In this case, you should know the syntax of class definition described in the
section Defining Classes.

Defining Classes
When you define a class, you must create a Natural class module, within which you create a DEFINE CLASS
statement. Using the DEFINE CLASS statement, you assign the class an externally usable name and define its
interfaces, methods and properties. You can also assign an object data area to the class, which describes the
layout of an instance of the class. The DEFINE CLASS statement is also used to supply a global unique
identifier to those classes that are to be registered with DCOM.

This section covers the following topics:

Creating a Natural Class Module
Specifying a Class
Defining an Interface
Assigning an Object Data Variable to a Property
Assigning a Subprogram to a Method
Implementing Methods

Creating a Natural Class Module

 To create a Natural class module

Create a Natural object of type Class.

Specifying a Class

The DEFINE CLASS statement defines the name of the class, the interfaces the class supports and the structure
of its objects. For classes that are to be registered with DCOM, it specifies also the Globally Unique ID of the
class and its Activation Policy.

17Copyright © Software AG 2002

Developing NaturalX ApplicationsDeveloping NaturalX Applications

 To specify a class

Use the DEFINE CLASS statement as described in the Natural Statements documentation.

Defining an Interface

Each interface of a class is specified with an INTERFACE statement inside the class definition. An
INTERFACE statement specifies the name of the interface and a number of properties and methods. For classes
that are to be registered with DCOM, it specifies also the Globally Unique ID of the interface.

A class can have one or several interfaces. For each interface, one INTERFACE statement is coded in the class
definition. Each INTERFACE statement contains one or several PROPERTY and METHOD clauses. Usually
the properties and methods contained in one interface are related from either a technical or a business point of
view.

The PROPERTY clause defines the name of a property and assigns a variable from the object data area to the
property. This variable is used to store the value of the property.

The METHOD clause defines the name of a method and assigns a subprogram to the method. This subprogram
is used to implement the method.

 To define an interface

Use the INTERFACE statement as described in the Natural Statements documentation.

Assigning an Object Data Variable to a Property

The PROPERTY statement is used only when several classes are to implement the same interface in different
ways. In this case, the classes share the same interface definition and include it from a Natural Copycode. The
PROPERTY statement is then used to assign a variable from the object data area to a property, outside the
interface definition. Like the PROPERTY clause, the PROPERTY statement defines the name of a property and
assigns a variable from the object data area to the property. This variable is used to store the value of the
property.

 To assign an object data variable to a property

Use the PROPERTY statement as described in the Natural Statements documentation.

Assigning a Subprogram to a Method

The METHOD statement is used only when several classes are to implement the same interface in different
ways. In this case, the classes share the same interface definition and include it from a Natural Copycode. The
METHOD statement is then used to assign a subprogram to the method, outside the interface definition. Like the
METHOD clause, the METHOD statement defines the name of a method and assigns a subprogram to the
method. This subprogram is used to implement the method.

 To assign a subprogram to a method

Use the METHOD statement as described in the Natural Statements documentation.

Implementing Methods

A method is implemented as a Natural subprogram in the following general form:

Copyright © Software AG 200218

Developing NaturalX ApplicationsDefining an Interface

For information on the DEFINE DATA statement see the Natural Statements Manual.

All clauses of the DEFINE DATA statement are optional.

It is recommended that you use data areas instead of inline data definitions to ensure data consistency.

If a PARAMETER clause is specified, the method can have parameters and/or a return value.

Parameters that are marked ’BY VALUE’ in the parameter data area are input parameters of the method.

Parameters that are not marked ’BY VALUE’ are passed by reference and are input/output parameters. This is
the default.

The first parameter that is marked ’BY VALUE RESULT’ is returned as the return value for the method. If more
than one parameter is marked in this way, the others will be treated as input/output parameters.

Parameters that are marked ’OPTIONAL’ are available with Version 4.1.2 and all subsequent releases. Optional
parameters need not to be specified when the method is called. They can be left unspecified by using the nX
notation in the SEND METHOD statement.

To make sure that the method subprogram accepts exactly the same parameters as specified in the corresponding
METHOD statement in the class definition, use a parameter data area instead of inline data definitions. Use the
same parameter data area as in the corresponding METHOD statement.

To give the method subprogram access to the object data structure, the OBJECT clause can be specified. To
make sure that the method subprogram can access the object data correctly, use a local data area instead of inline
data definitions. Use the same local data area as specified in the OBJECT clause of the DEFINE CLASS
statement.

The GLOBAL, LOCAL and INDEPENDENT clauses can be used as in any other Natural program.

While technically possible, it is usually not meaningful to use a CONTEXT clause in a method subprogram.

The following example retrieves data about a given person from a table. The search key is passed as a ’BY
VALUE’ parameter. The resulting data is returned through ’BY REFERENCE’ parameters (’BY REFERENCE’
is the default definition). The return value of the method is defined by the specification ’BY VALUE RESULT’.

19Copyright © Software AG 2002

Implementing MethodsDeveloping NaturalX Applications

Using Classes and Objects
Objects created in a local Natural session can be accessed directly and objects created in other processes or on
remote machines can be accessed via DCOM. In both cases the rules for accessing and using classes and their
objects are the same. The statement CREATE OBJECT is used to create an object (also known as an instance) of
a given class. To reference objects in Natural programs, object handles have to be defined in the DEFINE DATA
statement. Methods of an object are invoked with the statement SEND METHOD. Objects can have properties,
which can be accessed using the normal assignment syntax.

Copyright © Software AG 200220

Developing NaturalX ApplicationsUsing Classes and Objects

Note:
Classes created with NaturalX can all be used by COM, once they have been registered.

This section covers the following topics:

Defining Object Handles
Creating an Instance of a Class
Invoking a Particular Method of an Object
Accessing Properties
Sample Application

Defining Object Handles

To reference objects in Natural programs, object handles have to be defined as follows in the DEFINE DATA
statement:

Example

DEFINE DATA LOCAL
 1 #MYOBJ1 HANDLE OF OBJECT
 1 #MYOBJ2 (1:5) HANDLE OF OBJECT
 END-DEFINE

Creating an Instance of a Class

 To create an instance of a class

Use the CREATE OBJECT statement as described in the Natural Statements documentation.

Invoking a Particular Method of an Object

 To invoke a particular method of an object

Use the SEND METHOD statement as described in the Natural Statements documentation.

Accessing Properties

Properties can be accessed using the ASSIGN (or COMPUTE) statement as follows:

21Copyright © Software AG 2002

Defining Object HandlesDeveloping NaturalX Applications

Object Handle - operand1

Operand1 must be defined as an object handle and identifies the object whose property is to be accessed. The
object must already exist.

operand2

As operand2, you specify an operand whose format must be data transfer-compatible to the format of the
property. Please refer to the data transfer compatibility rules in the Natural Reference documentation for further
information.

If the object is to be accessed via DCOM, you must also take into account the rules for data type conversion
which are outlined in the section Data Type Conversions.

property-name

The name of a property of the object.

If the property name conforms to Natural identifier syntax, it can be specified as follows

create object #o1 of class "Employee"
 #age := #o1.Age

If the property name does not conform to Natural identifier syntax, it must be enclosed in angle brackets:

create object #o1 of class "Employee"
 #salary := #o1.<<%Salary>>

The property name can also be qualified with an interface name. This is necessary if the object has more than
one interface containing a property with the same name. In this case, the qualified property name must be
enclosed in angle brackets:

create object #o1 of class "Employee"
 #age := #o1.<<PersonalData.Age>>

Example

define data
 local
 1 #i (i2)
 1 #o handle of object
 1 #p (5) handle of object
 1 #q (5) handle of object
 1 #salary (p7.2)
 1 #history (p7.2/1:10)
 end-define
 * ...
 * Code omitted for brevity .
 * ...
 * Set/Read the Salary property of the object #o.
 #o.Salary := #salary
 #salary := #o.Salary
 * Set/Read the Salary property of
 * the second object of the array #p.
 #p.Salary(2) := #salary
 #salary := #p.Salary(2)
 *
 * Set/Read the SalaryHistory property of the object #o.
 #o.SalaryHistory := #history(1:10)
 #history(1:10) := #o.SalaryHistory
 * Set/Read the SalaryHistory property of

Copyright © Software AG 200222

Developing NaturalX ApplicationsAccessing Properties

 * the second object of the array #p.
 #p.SalaryHistory(2) := #history(1:10)
 #history(1:10) := #p.SalaryHistory(2)
 *
 * Set the Salary property of each object in #p to the same value.
 #p.Salary(*) := #salary
 * Set the SalaryHistory property of each object in #p
 * to the same value.
 #p.SalaryHistory(*) := #history(1:10)
 *
 * Set the Salary property of each object in #p to the value
 * of the Salary property of the corresponding object in #q.
 #p.Salary(*) := #q.Salary(*)
 * Set the SalaryHistory property of each object in #p to the value
 * of the SalaryHistory property of the corresponding object in #q.
 #p.SalaryHistory(*) := #q.SalaryHistory(*)
 *
 end

In order to use arrays of object handles and properties that have arrays as values correctly, it is important to
know the following:

A property of an occurrence of an array of object handles is addressed with the following index notation:

#p.Salary(2) := #salary

A property that has an array as value is always accessed as a whole. Therefore no index notation is necessary
with the property name:

#o.SalaryHistory := #history(1:10)

A property of an occurrence of an array of object handles which has an array as value is therefore addressed as
follows:

 #p.SalaryHistory(2) := #history(1:10)

Sample Application

An example application is provided in the libraries SYSEXCOM and SYSEXCOC. See the A-README
members in these libraries for information about how to run the example.

*THIS-OBJECT System Variable
Format/length: HANDLE OF OBJECT.

Content modifiable: No.

This system variable is a handle to the currently active object. The currently active object uses the
*THIS-OBJECT system variable either to execute its own methods or to pass a reference to itself to another
object.

*THIS-OBJECT only contains an actual value when a method is being executed. Otherwise it contains
NULL-HANDLE.

The following statements may occur in a method implementation:

Example

23Copyright © Software AG 2002

*THIS-OBJECT System VariableDeveloping NaturalX Applications

define data
 ...
 local
 1 #self handle of object
 1 #another handle of object
 end-define
 ...
 * Calling the current object’s own methods.
 * ("Hello" is a method of the current object.)
 send "Hello" to *this-object
 ...
 * Passing a handle to the current object
 * in a method call to another object.
 #self := *this-object
 send "ItsMe" to #another with #self
 ...
 *
 end

Copyright © Software AG 200224

Developing NaturalX Applications*THIS-OBJECT System Variable

Distributing NaturalX Applications
On Windows, UNIX and OS/390 platforms, NaturalX applications can be distributed using DCOM. Most
information in this section is of a general nature. The section Configuration Examples supplies platform-specific
information.

This section covers the following topics:

General
Globally Unique Identifiers (GUIDs)
NaturalX Servers
Activation Policies
Registration
DCOMPARM System Command (OS/390 Only)
Type Information
Configuration Overview
Sample Application

General
Using NaturalX, you can make Natural classes and their services available to local and remote clients, thus
creating distributed applications. Local clients are processes that run on the same machine as a given NaturalX
server, and remote clients are processes that run on a different machine.

In order to distribute applications, a widely-used distributed object technology is used - the Microsoft Distributed
Component Object Model (DCOM). When you register a Natural class to DCOM, its interfaces are presented to
clients in a quasi-standardized fashion as dynamic COM interfaces, which are also known as dispatch interfaces.
These interfaces can be easily addressed by many programming languages including Visual Basic, Java, C++
and, of course, Natural.

There are several points that must be taken into consideration when organizing the distribution of a NaturalX
application. Each of these points is discussed in more detail in this chapter.

Determine whether each class should be internal, external or local (see the section Internal, External and
Local Classes).
Globally unique IDs (GUIDs) must be assigned to the internal and external classes and their interfaces in
order to be able to address them uniquely in the network (see the section Globally Unique Idenitfiers
(GUIDs).
You can define the activation policy for each class in order to control the conditions under which DCOM
activates it (see section Activation Policies).
In order to organize classes to applications, you can define NaturalX servers and assign the classes to them
(see the section NaturalX Servers).
Classes must be registered to make them known to DCOM (see section Registration).
You can configure an application in order to further control its behavior (see the sections Configuration
Overview and Configuration Examples).

Internal, External and Local Classes

It is important to distinguish between classes for internal use, classes for external use and those for local use
only.

25Copyright © Software AG 2002

Distributing NaturalX ApplicationsDistributing NaturalX Applications

Internal Classes

The most important feature of internal classes is that their objects (instances) can only be created in the local
client process.

Internal classes have the following features:

Access to client session-dependent resources such as files and system variables.
Can run within the client transaction.
Can be debugged using the Natural Debugger.

External Classes

Windows 98/NT/2000 and UNIX

An external class can be created in the client process provided that the client process is simultaneously a server
for the class. In addition, an external class can be debugged with the Natural Debugger (remote debugging).

OS/390

The most important feature of external classes is that their objects (instances) can not be created in the local
client process.

All Platforms

External classes have the following features on all platforms:

No access to client session-dependent resources such as stacks, files and system variables.
Do not run within the client transaction.
Can be used by remote nodes.
Can be used by various clients using a variety of languages such as Natural, Java, Visual Basic, C/C++, etc.

Local Classes

Local classes are classes which are executed in local execution mode. Natural executes a class locally (within the
Natural session) if it is either not registered or if DCOM is not available.

Local classes have the following features:

Can be used even if DCOM is not available.
Need not be registered with DCOM.
Cannot be used from outside the client process.

Globally Unique Identifiers - GUIDs
DCOM uses global unique identifiers (GUIDs) - 128-bit integers that are virtually guaranteed to be unique
throughout the world - to identify every interface and every class. This helps to ensure that server components
can be located and to prevent clients connecting to an object accidentally.

If a class is to be registered to DCOM, every interface defined in a Natural class and the class itself must be
associated with such a globally unique ID.

Once a globally unique ID has been assigned to an interface or a class, the ID must never be changed.

Copyright © Software AG 200226

Distributing NaturalX ApplicationsGlobally Unique Identifiers - GUIDs

Using the Class Builder

On Windows NT and Windows 2000, Natural provides the Class Builder as the tool to develop Natural
classes.The Class Builder automatically assigns a GUID to every class and interface.

Using the Data Area Editor

On OS/390 and UNIX, you must use the Data Area Editor to create GUIDs. GUIDs are alphanumeric constants
of type A36 in Natural. If you use this approach, it is suggested that, for ease of administration, you use one
Local Data Area to store all the GUIDs for one project or application.

Note:
GUID generation is a functionality of COM and on the mainframe available in Batch and TSO only.

1. Create an LDA and insert one or more GUIDs, each provided with a symbolic name.
For further information, see your Natural User’s Guide.
These symbolically-named constants are inserted into the data area and are initialized with an
internally-generated globally unique ID.

2. Include the GUID LDA at the top of the class and use these named constants in your class and interface
definition.

Example Including an LDA containing a GUID Definition in a Class Definition

NaturalX Servers
This section covers the following topics:

COM Classes and Servers
NaturalX Classes and Servers
NaturalX Servers and Natural Sessions under OS/390
NaturalX Servers and Natural Sessions under Windows 98/NT/2000 and UNIX
The Role of the Server ID
Organizing Server IDs

27Copyright © Software AG 2002

NaturalX ServersDistributing NaturalX Applications

COM Classes and Servers

Each COM class must be hosted by a server process. The server process has a number of administrative and
technical responsibilities, such as making the class and its interfaces available to DCOM and maintaining the
memory occupied by the objects created. Whenever a client requests a new object of a certain class, DCOM
checks whether the corresponding server process is already running. If this is not the case, DCOM launches it
and passes the request to the server. When the server starts up, it makes its classes available to DCOM. While the
server is running, it executes client requests for creation and deletion of objects and execution of methods. When
the last object maintained by a server is deleted, the server shuts down automatically. For more detailed
information about DCOM classes and servers, please refer to the Microsoft DCOM specification.

NaturalX Classes and Servers

Classes implemented with Natural can be made accessible as DCOM classes. But with Natural, it is not
necessary to implement DCOM servers to host the classes. Instead, NaturalX itself performs the tasks of a
DCOM server. NaturalX acts as a generic DCOM server for all classes written in Natural. The task that remains
for a Natural class developer is just to implement the classes and to assign them to a NaturalX server.

NaturalX Servers and Natural Sessions under OS/390

Under OS/390, a Natural DCOM server process can manage several Natural sessions in parallel. This means that
objects from different clients which request the same server are all hosted by the same server process (region).
Each client exclusively owns its own Natural session.

Starting NaturalX Servers

EntireX DCOM launches a NaturalX server automatically if a client requests a server which is not currently
active. You can also start a NaturalX server manually under OS/390 UNIX services, under TSO or in batch by
executing the load module "naturalx" as follows:

Copyright © Software AG 200228

Distributing NaturalX ApplicationsCOM Classes and Servers

Example for OS/390 UNIX Shell

naturalx "fuser=(10,32) profile=(dcomqa, 10,930) DCOM=(SERVID=qatest01)"

Example for TSO

 PROC 0
 CONTROL NOFLUSH ASIS LIST CONLIST
 ALLOC FILE(NATXENV) +
 PATH(’/u/nat/natxenv’) PATHOPTS(ORDONLY)
 ALLOC FILE(CMPRINT) DA(*)
 ALLOC FILE(CMSYNIN) DA(*)
 ALLOC FILE(SYSOUT) DA(*)
 ISPEXEC LIBDEF ISPLLIB DATASET ID(’PRD.NXX111.LOAD’ -
 ’PRD.NAT311.LOAD’)
 CALL ’PRD.NXX111.LOAD(NATURALX)’ +
 ’profile=(dcomqa,10,930),dcom=(servid=qatest01)’
 END

29Copyright © Software AG 2002

NaturalX Servers and Natural Sessions under OS/390Distributing NaturalX Applications

Example for Batch

 //NXXSVR JOB CLASS=K,MSGCLASS=X
 //NXX EXEC PGM=NATURALX,REGION=3200K,
 // PARM=(’profile=(dcomqa,10,930),’,
 // ’dcom=(servid=qatest01)’)
 //STEPLIB DD DISP=SHR,DSN=PRD.NXX111.LOAD
 // DD DISP=SHR,DSN=PRD.NAT311.LOAD
 //SYSUDUMP DD SYSOUT=X
 //NATXENV DD PATH=’/u/nat/natxenv’,PATHOPTS=(ORDONLY)
 //CMPRINT DD SYSOUT=X
 /*

NaturalX Servers and Natural Sessions under Windows 98/NT/2000 and
UNIX

Under Windows 98/NT/2000 and UNIX, each Natural session runs in its own exclusive NaturalX server process.

The Role of the Server ID

One of the tasks of a DCOM server is to make its classes available to DCOM during startup. But since NaturalX
acts as a generic DCOM server, it has no built-in knowledge about the classes it shall provide. Instead, it finds
the list of these classes in the system registry under the key of its server ID. The server ID is a Natural-owned
key in the system registry, keeping together all classes that belong to a given NaturalX server. It is an arbitrary
alphanumeric string of 32 characters which does not contain blanks and which is not case sensitive.

How does a NaturalX server know under which server ID it is running? The server ID is defined with the Natural
parameter COMSERVERID=serverid (for OS/390, DCOM=(SERVID=serverid)). This parameter is either
passed to a NaturalX server as a dynamic parameter on the command line, or it is defined in the Natural
parameter module.

Copyright © Software AG 200230

Distributing NaturalX ApplicationsNaturalX Servers and Natural Sessions under Windows 98/NT/2000 and UNIX

How are classes assigned to server IDs? Assume Natural has been started with a certain server ID. Then every
class that a user registers during this Natural session is entered into the system registry under the current server
ID.

Server IDs provide a means of grouping classes created in Natural and assigning them to different NaturalX
server processes. The use of server IDs is, however, not compulsory: if Natural is started without a server ID, all
Natural classes are registered under the predefined server ID "Default".

Example

Consider the example Employees application consisting of the classes DepartmentList, EmployeesList and
Employee (this application is contained in the example library SYSEXCOM). These three classes are to be
hosted by a NaturalX server called Employees.

1. Start Natural with the desired server ID.
2. Logon to the library SYSEXCOM.

LOGON SYSEXCOM
3. Register the classes with the REGISTER command on the Natural command line

REGISTER *

Note:
On the mainframe, the REGISTER command is only available under TSO and in batch.
For further information, see the section The REGISTER Command.
The three classes are now registered under the server ID Employees. The followingexample shows the
Registry Editor under UNIX.

31Copyright © Software AG 2002

The Role of the Server IDDistributing NaturalX Applications

Whenever an object of one of these classes is requested, DCOM will start a NaturalX server process with
the server ID Employees, which will then provide the classes.

Organizing Server IDs

The server ID represents the set of all classes that are made available to DCOM when the corresponding
NaturalX server is started. It is recommended that you group under one server ID those classes that form an
application from the business point of view, or that otherwise belong together logically. Similarly, classes that
are never used in the same context should be registered under different server IDs. Another criterion for the
assignment of classes to server IDs is security (see the section Security). From this aspect, it makes sense to
group under the same server ID those classes for which common authorizations will be defined.

Copyright © Software AG 200232

Distributing NaturalX ApplicationsOrganizing Server IDs

Activation Policies
This section covers the following topics:

Activation Policies Under Windows 98/NT/2000 and UNIX
Activation Policies Under OS/390
Setting Activation Policies
When to use which Activation Policy

Activation Policies Under Windows 98/NT/2000 and UNIX

If a client makes a request to create an object of a certain class, it is DCOM’s task to start a server process that
provides the class and to direct the request to this process. For Natural classes, the responsible server process is a
NaturalX server. DCOM recognizes different options that control when a new server process is started or when
an object is created in a server process that is already running. For further information, see the section
Registration. While registering a Natural class with the REGISTER command, you can control which activation
options DCOM shall use for this class. NaturalX combines the different options supported by DCOM in the form
of the following three activation policies:

ExternalMultiple
If a Natural class is registered with the activation policy ExternalMultiple, and a client requests an object of
that class, DCOM tries first to create the requested object in the current process. Remember that the client
itself might at the same time be a NaturalX server and might provide the class itself. If the current process is
not a server for the class, DCOM starts a new NaturalX server process and creates the object in that process.
If a second object of the same class is created later, this object is also created in that server process. This
means that the same server process can contain several objects of the class.
ExternalSingle
If a Natural class is registered with the activation policy ExternalSingle, DCOM starts a new NaturalX
server process each time an object of this class is created. One server process can contain only one object of
the class.
InternalMultiple
If a Natural class is registered with the activation policy InternalMultiple, DCOM always creates objects of
this class in the current process. The same server process can contain several objects of the class.

The default activation policy is ExternalMultiple. This default is defined with the Natural parameter
ACTPOLICY and can be changed with the NATPARM utility.

33Copyright © Software AG 2002

Activation PoliciesDistributing NaturalX Applications

Activation Policies Under OS/390

Activation policies are used to decide whether a class requires an exclusive Natural session or whether it can
share one with other objects. As far as DCOM is concerned, a NaturalX server is responsible for all the objects
of those classes which are registered with the same server ID. That is, for any one server ID, only one NaturalX
server process is active.

Activation policy is evaluated by the NaturalX server. The following two sets of options are supported:

External/Internal
Determines whether an object is created in the Natural client session requesting it (internal), or in a different
Natural session (external).
Single/Multiple
Determines whether an object requires a Natural session for its exclusive use (single) or not (multiple).

NaturalX combines the above options to form the following three activation policies with which classes can be
registered:

InternalMultiple
An object is created within the current Natural session.
ExternalMultiple
An object is created in a different Natural session which may accomodate multiple objects. Because it is not
possible to distinguish between multiple client applications running under the same user ID on the same
node, all objects created by the same user on the same node are hosted by the same single Natural session.
This is valid even if the objects are created from within different applications.
ExternalSingle
Each object occupies a separate Natural session for its exclusive use.

Note:
Even though objects registered as ExternalMultiple can coexist with other objects in a Natural session, the
multiple objects requested by one client are collected within one session. This means that objects form
different clients can not interfere with each other.

Setting Activation Policies

The activation policy of a class can be set in three different ways, in the following order of precedence:

Explicity as part of the REGISTER command
In the DEFINE CLASS statement
With the profile parameter ACTPOLICY=activation-policy (for OS/390,
DCOM=(ACTPOL=activation-policy))

Copyright © Software AG 200234

Distributing NaturalX ApplicationsActivation Policies Under OS/390

When to use which Activation Policy

Non-trivial DCOM applications will mostly deal with persistent objects, i.e. objects stored in databases. For such
applications, some considerations concerning database access, transaction handling and user isolation must be
made. Consider the following scenario: clients A and B both create an object of a class that is provided by a
certain NaturalX server process. Assume that the NaturalX server uses a database to load and store its objects. If
both clients were served by the same server process, they would appear to the database as one single user. This
would have the consequence that a transaction started by a method call from Client A can be committed or
backed out by a method call from Client B. Such interferences are obviously to be avoided.

There are two approaches to avoiding this interference: either the clients do not use persistent objects, or each of
them is served by its own NaturalX server process. Both approaches have their advantages in different situations;
for a class or application that does not access databases or other shared resources, it is useful to serve several
clients with a single server process. For classes that access databases or other shared resources, it is necessary to
isolate different clients in different server processes. Hence both approaches should be possible. Activation
policies give an administrator the means to control the activation behavior for each class at registration time.

Example

This example illustrates how the various activation policies can be used. Let us consider parts of an imaginary
travel agency application. The application contains the business classes Trip, Skipper and RoutePlanner. The
Trip class represents a sailing trip to be planned, the Skipper class represents the skippers available to lead the
trips. RoutePlanner is a class that determines an optimal route for a trip. Assume that the Trip and Skipper
classes use a database to read and store their objects. The RoutePlanner class just performs some calculations on
a given Trip object and does not use a database.

Since some of the business classes use transactional access to a database, and a transaction might span several
method calls, each active client needs to be served with its own NaturalX server process. This can be done by
defining an additional class SagTours, which represents an application session. This class can be used, for
example, to keep general information about the session status, but the main task will be to create business objects
on behalf of a client.

Class SagTours

* Represents a SagTours application session.
 *
 define class SagTours
 local using tour-ids
 id clsid-sagtours
 *
 interface Create /* Used to create application objects. */
 id iid-sagtours-create
 *
 method newTrip /* Creates a new Trip object. */
 is trip-n
 parameter
 1 trip handle of object by value result
 end-method

35Copyright © Software AG 2002

When to use which Activation PolicyDistributing NaturalX Applications

 method newSkipper /* Creates a new Skipper object. */
 is skip-n
 parameter
 1 skipper handle of object by value result
 end-method
 *
 end-interface
 *
 end-class
 end

This class will be registered as ExternalSingle. This means that each creation of a SagTours object starts a
NaturalX server process for the client that requested the object. A client will create a SagTours object only once
and will use its methods later to create the business objects it needs. In order to create a Trip object, the client
will call the method newTrip, which is implemented as follows:

Method newTrip

 * This method creates a new Trip object.
 *
 define data parameter
 1 trip handle of object by value result
 end-define
 *
 create object trip of class "Trip"
 *
 end

The Trip class itself will be registered as InternalMultiple. This ensures that the Trip objects created by the
method newTrip are created in the NaturalX server process just started for this client.

Now let us look at the class RoutePlanner.

Class RoutePlanner

* Plans optimal routes for sailing trips.
 *
 define class RoutePlanner
 local using tour-ids
 id clsid-planner
 *
 interface routing
 id iid-planner-routing
 *
 method plan /* Plans a sailing trip. */
 is plan-n
 parameter
 1 trip handle of object by value
 end-method
 *
 end-interface
 *
 end-class
 end

Copyright © Software AG 200236

Distributing NaturalX ApplicationsWhen to use which Activation Policy

Method plan

 * This method plans a sailing trip.
 *
 define data parameter
 1 trip handle of object by value
 end-define
 *
 * Perform some operations on the given Trip object.
 *
 end

This class can be registered as ExternalMultiple. In this case, all RoutePlanner objects created by different
clients would be created in the same NaturalX server process. This does not do any harm if the methods of this
class do not access databases, or if each database transaction is fully contained in a method (i.e. if each method
subprogram ends with either a BACKOUT TRANSACTION statement or an END TRANSACTION statement).

Now let us look at a sample client program:

Sample Client Program

 define data local
 sagTours handle of object
 trip handle of object
 planner handle of object
 end-define
 *
 * Start the application session.
 create object sagTours of "SagTours"
 *
 * Create a Trip object.
 send "newTrip" to sagTours return trip
 * Create a RoutePlanner object.
 create object planner of "RoutePlanner"
 * Plan the trip.
 send "plan" to planner with trip
 *
 end

The client first creates a SagTours object. This starts a new NaturalX server process exclusively for this client.
The client then uses the SagTours object to create a Trip object in the context of this application session. Note
that the client creates the RoutePlanner object directly. This is possible because the class is registered as
ExternalMultiple, but it is not necessary: the SagTours class could also provide a method for the creation of
RoutePlanner objects. Afterwards it lets the business objects do their jobs. The objects are automatically released
at program end. The deletion of the SagTours object causes the NaturalX server to shut down.

Note:
This example shows only the NaturalX techniques needed to illustrate the usage of activation policies. A
real-world application would require a lot more. The classes would use object data areas and they would
surely have globally unique IDs assigned. Also parameter data areas would be used instead of inline
parameter declarations.

37Copyright © Software AG 2002

When to use which Activation PolicyDistributing NaturalX Applications

Registration
If a class is to be made accessible to DCOM clients, it is necessary to add some information about the class to
the system registry. DCOM clients will mostly address a class with a meaningful name, the so-called
programmatic identifier (ProgID) as in the following example:

CREATE OBJECT #O1 OF CLASS "Employee "

For a Natural class, the class name defined in the DEFINE CLASS statement is written into the registry as a
ProgID.

System registry entries map this ProgID to the globally unique ID (GUID) of the class, allowing DCOM to
uniquely locate all information about the class. Further information that is stored in the registry includes the path
and name of the responsible DCOM server, the path and name of the type library, and interface information.

This section covers the following topics:

Registration with Natural
Automatic Registration
Manual Registration
Registration Files and Type Library
Client Registration
Registration Hints

Registration with Natural

Natural classes can be registered (or unregistered) manually with the system command
REGISTER(orUNREGISTER), automatically after the class is stowed (or deleted), or by running the .reg files
which are generated every time a class is registered.

In order to register classes, you must have the rights to modify the system registry and your system environment
must be able to use COM.

It is usually not advisable to change the Natural entries in the system registry directly in the registry editor
because this can lead to inconsistent registry entries.

A class is always registered for the server ID under which Natural was started.

Note:
On the mainframe, the REGISTER command is only available under TSO and in batch.

Automatic Registration

If the profile parameter AUTOREGISTER(for OS/390 DCOM=(AUTOREG=value)) is set to ON, a Natural
class is automatically registered when it is stowed (cataloged), and unregistered automatically when it is deleted.
This means that the user can test the class directly after stowing it.

Automatic registration uses the activation policy setting defined in the WITH ACTIVATION POLICY clause of
the DEFINE CLASS statement of the class. If this clause is not specified, the setting from the profile parameter
ACTPOLICY=activation-policy (for OS/390, DCOM=(ACTPOL=activation-policy)) is used.

If automatic registration is set and a class is stowed (cataloged), the class is unregistered before it is stowed and
registered after the stow has finished so that all old registry entries are removed.

Copyright © Software AG 200238

Distributing NaturalX ApplicationsRegistration

Manual Registration

The REGISTER Command

The system command REGISTER is used to register Natural classes. They are registered for the server ID under
which Natural was started.

Note:
On the mainframe, the REGISTER command is only available under TSO and in batch.

class-module-name

This defines which class or classes are to be registered by specifying the appropriate Natural object module
name.

library-name

This defines which library or libraries are to be searched for the class or classes.

ES IM EM

This defines the activation policy which is registered for the class or classes.

You can set one of the following parameters:

Parameter Description

ES Sets activation policy ExternalSingle

IS Sets activation policy InternalSingle

EM Sets activation policy ExternalMultiple

39Copyright © Software AG 2002

Manual RegistrationDistributing NaturalX Applications

The following table shows which classes will be registered for all possible class/library combinations:

Class Module
Name
Specification

Library Name Specification

library-name * -

class-module-name class with class module
name class-module-name of
library library-name

all classes with the class module
name class-module-name which
are found in the current step
libraries

class with class module
name
class-module-name

* all classes which are found
in the library library-name
are registered

all classes which are found in the
current step libraries are
registered

all classes of the current
logon library are
registered

If this parameter is not specified in the REGISTER command or the DEFINE CLASS statement, the default
activation policy defined in NATPARM is used.

The UNREGISTER Command

The system command UNREGISTER is used to unregister Natural classes.

class-module-name

This defines which class or classes are to be unregistered by specifying the appropriate Natural object module
name.

library-name

This defines the library or libraries which are to be searched for the class or classes.

server-ID

This defines the server ID of the class or classes.

Copyright © Software AG 200240

Distributing NaturalX ApplicationsManual Registration

The following table shows which classes will be unregistered for all possible class/library/server ID
combinations:

Class Name
Specification

Library Name /Server ID Combination

- - library-name - library-name
server-ID

* - * server-ID

class-module-name class with
class-module-name
in the current
logon library if it is
registered for the
current server ID

class with
class-modulename
of library
library-name if it
is registered for
the current server
ID

class with
class-module-name
of library
library-name if it
is
registered for the
server server-ID

all classes with
class-module-name
found in the
current step
libraries if they are
registered for the
current
server ID

all classes with the
name
class-module-name
found in the
current step
libraries which are
registered for the
server server-ID

* all classes of the
current
logon library
which are
registered for the
current server ID

all classes found
in the
library
library-name
which are
registered for the
current server ID

all classes found in
the
library
library-name
which are
registered for the
server
server-ID

all classes found in
the current step
libraries which are
registered for the
current server ID

all classes found in
the current step
libraries which are
registered for the
server
server-ID

A REGISTER or UNREGISTER system command will return an error message if class-module-name or
class-module-name and library-name are specified but either the class or library is not found. If only an asterisk
(*) is given in the REGISTER or UNREGISTER system command, no error message is returned if no class has
been registered or unregistered.

If a class without class GUIDs or interface GUIDs is specified in the REGISTER system command, an error
message will be returned. Such a class can only be used in the local Natural session.

41Copyright © Software AG 2002

Manual RegistrationDistributing NaturalX Applications

Registration Files and Type Library

Registration files (.reg files) enter information in the system registry when they are executed.

Natural will automatically create registration files for the server and the client side when a class is registered.

The server .reg file contains the same information that was entered in the system registry and the client .reg file
contains all information which is generated for the client side. When a class is unregistered, the .reg files will be
deleted. If a .reg file is not to be deleted with the unregistration, the file has to be renamed before unregistering
the class because Natural deletes only files with the default .reg file names.

The .reg files will be named <classmodule_name>_S.reg (for the server) and <classmodule_name>_C.reg (for
the client) and, to activate a different version, <classmodule_name>_V.reg.

A type library is created automatically when a class is registered, and it is deleted when a class is unregistered. A
reference to the type library is also entered in the registry.

The default type library name is <classmodule_name>.tlb. A new name will be generated if a type library with
this name exists already.

The registration files and the type library are stored in the Natural etc-directory as follows:

$NATDIR/$NATVERS/etc /<serverid>/<classname>/v<version-number>

Example

The files for version one of a class MY.TEST.CLASS registered for the server ID SERVER01 are located as
follows:

$NATDIR/$NATVERS/etc / SERVER01/MY.TEST.CLASS/v1

Client Registration

Natural does not enter the registration information for the clients automatically in the system registry, but creates
a registration file for the client. The client registration file contains an entry (RemoteServerName) that tells
DCOM on which machine the DCOM server class can be found. This entry is not filled from Natural. It can be
entered in either of two ways:

1. The RemoteServerName can be entered in the registration files. In this case the line

 " RemoteServerName "=

has to be changed to

 " RemoteServerName"="<server_machine_name> "

After this, the registration file has to be executed on the client machine.

2. The registration file is executed first, and then the RemoteServerName is changed using the DCOMCNFG
tool or the Registry Editor (see the section Configuration Examples).

Copyright © Software AG 200242

Distributing NaturalX ApplicationsRegistration Files and Type Library

Registration Hints

The following points should be taken into account when registering and unregistering classes:

The class GUID should never be changed for an existing class: Natural displays an error message if a class
that is already found in the registry is registered again with another GUID. The old class must first be
unregistered in this case.
The same class should never be registered for more than one server ID: there is a one-to-one relationship
between the server ID and the AppID, and a class has only one AppID defined, which means that a
registration for a second server ID overwrites the AppID. Furthermore, if the class is unregistered for one
server ID, all entries of the class are removed without checking whether it is registered for a second server.
Except for client registration, you should always use the Natural system commands REGISTER and
UNREGISTER to change registry entries for a class because they remove redundant registry entries.
For example, if a client class has been registered for server1 and a server registration file with a registration
of the same class for server2 is run, the AppID key of the class is changed and all references to the old
AppID key are lost. So this old AppID key can never be deleted. When a class is registered with the system
command REGISTER, a check is made to see whether the AppID has been changed, and the old AppID is
removed if no other class needs it.
If Natural is not available on the client machine and registry entries for a Natural class are to be removed
from the system registry, you should do this with the registry editor. If Natural is available on the client
machine, it is easier to register the class first with the Natural system command REGISTER and unregister
it afterwards with the system command UNREGISTER.
The registration information for a class is taken from the catalogued class object, so that it is not possible to
register or unregister a class that is only available in source format.
If you want to register classes during a Natural session, the session must be started with the parameters
PARM and COMSERVERID=server-ID (for OS/390, DCOM=(SERVID=server-ID)) only as shown
below. This is because only these two parameters are stored in the registry key "LocalServer32". If a class is
tested with other parameter settings, there is no guarantee that it will run later when it is started from a
DCOM client.

Windows 98/NT/2000:
 NATURAL.EXE PARM=COMPARM COMSERVERID=SERVER1
 UNIX:
 NATURAL PARM=COMPARM COMSERVERID=SERVER1

 OS/390:
 NATURAL DCOM=(SERVID=SERVER1)

Session Parameters for NaturalX Servers (OS/390 Only): If DCOM launches the server, the session
parameters defined in the system registry are used. Although the REGISTER command only sets the
parameter DCOM=(SERVID=server-id), it is possible to maintain the server session parameters in the
system registry using the Natural system command DCOMPARM. If you start the server manually from the
shell, you can specify dynamic session parameters with the shell command. For example:

naturalx "profile=myprofile fnat=(10,930) dcom=(serverid=employees)"

If you start the server manually in batch/TSO, you can specify dynamic session parameters with the
"naturalx" command or via the dataset name CMPRMIN.

Usually only users with administrator rights can change the system registry. So if you receive an error when
trying to register a class, check to see whether you have the rights required to change the registry.
When a Natural class is registered, some additional information is entered in the registry that is only needed
by Natural (not by DCOM). The information which is stored in the additional registry keys is the server ID
(see section NaturalX Servers), the activation policy (see section Activation Policies) and the location
(Natural class module name and library of class) of the class. This information is necessary, for example, if
all classes of a specified server ID are to be unregistered or to make the served classes available when
Natural is started.

43Copyright © Software AG 2002

Registration HintsDistributing NaturalX Applications

There is a one-to-one relationship between the server ID and the AppID (under
HKEY_CLASSES_ROOT/AppID) of a class. When a class is registered for a new server ID, a new GUID - the
AppID, is generated and assigned to this server ID. The AppID is used by DCOM to group the DCOM classes.
Security settings and (for client registrations) the remote machine name are defined for an AppID, i.e. all classes
which belong to one AppID have the same security settings (see the sections Configuration Overview and
Security).

Copyright © Software AG 200244

Distributing NaturalX ApplicationsRegistration Hints

DCOMPARM System Command - OS/390 Only
The system command DCOMPARM is used to display and modify the Natural parameters for a specified server
ID in the system registry.

The parameters for the specified server ID are read from the system registry and are displayed in the ‘DCOM
Parameters’ screen, where they can be modified. Make sure that no parameter is split at the end of an input line.

When you save your changes, NaturalX searches the parameter list for the parameter
DCOM=(SERVERID=serverID). If the parameter is found, it is moved to the end of the list. If it is not found, it
is created at the end of the parameter list. No other data validation takes place.

You can reread the parameters from the system registry for the specified server ID by issuing the READ
command.

server-ID

Specify the server ID which was used for the Natural session in which the REGISTER command for the Natural
class was executed.

Note:
You can find the server ID in the system registry.

Type Information
This section covers the following topics:

Overview
NaturalX and Type Information
Using Type Information

Overview

Type information is a means to completely describe a class along with all of its interfaces, down to the names
and types of the methods. It contains the necessary information about classes and their interfaces, for example,
which interfaces exist on which classes, which member functions exist in those interfaces, and which argument
those functions require.

This information is used by clients to find out details about a class and its methods, for example, by
type-information browsers to present available objects, interfaces, methods and properties to an end user.

Another important area for using type information is the widely-used OLE automation technique which is also
used by NaturalX.

There are several ways to store type information. A common way is generating the type information in type
library (.TLB) files.

45Copyright © Software AG 2002

DCOMPARM System Command - OS/390 OnlyDistributing NaturalX Applications

NaturalX and Type Information

Creating Type Information

For each Natural class, a type library file is created when the class is registered.

The type library is generated in the $NATDIR/$NATVERS/etc/<serverid>/<classname>/<version> directory
and connected to the class via an entry in the registry.

The name of the class module is used, and the .tlb extension is appended unless the type library file name
conflicts with an existing name. Then a number is attached to the class module name.

Using Type Information

Each interface defined in a Natural class is seen by clients as a dynamic interface (also called a dispatch
interface). Each method of an interface is seen by clients under the name defined in the DEFINE METHOD
statement.

The first interface in a Natural class is marked as the default dispatch interface.

The support of type information also makes it possible to define multiple interfaces with identical
method/property names. The Natural client simply addresses the corresponding method by using the interface
name (as defined in the Natural class) as the prefix of the method name, as shown in the following example:

CREATE OBJECT #O3 OF CLASS "DepartmentList"
 SEND "Iterate.PositionTo" TO #O3 WITH "C" RETURN #DEPT

Natural clients use type information to find out to which interface a method or property belongs.

Note:
Natural clients do not use type information at catalog time to perform syntax checks.

Copyright © Software AG 200246

Distributing NaturalX ApplicationsNaturalX and Type Information

Data Type Conversions

Natural Types to OLE Types

In order to receive data from clients or to pass data to classes written in different programming languages, the
Natural data types are converted to so-called OLE automation-compatible types. This table shows how clients
see method parameters or properties of a Natural class. For example, if a Natural class has a method parameter or
a property with the format A, this is seen by clients as VT_BSTR.

Natural Data Type Automation-Compatible Type

A VT_BSTR

B1 VT_UI1

B2 VT_UI2

B4 VT_UI4

Bn (n != 1, 2, 4) SAFEARRAY of VT_UI1

C not supported

D VT_DATE

F4 VT_R4

F8 VT_R8

I1 VT_I2

I2 VT_I2

I4 VT_I4

HANDLE OF GUI not supported

HANDLE OF OBJECT VT_DISPATCH

L VT_BOOL

N15.4 VT_CY

Nn.m (n.m != 15.4) VT_R8

P15.4 VT_CY

Pn.m (n.m != 15.4) VT_R8

T VT_DATE

An array of a given Natural type is mapped to a SAFEARRAY of the corresponding VT type.

There are, however, some special cases:

A variable of type Bn, where n is not 1, 2, 4 or an array of such types, is always mapped to a
one-dimensional SAFEARRAY of VT_UI1. This is the way recommended by Microsoft to transport binary
data through a dispatch interface.
Control variables are not mapped. They have no meaning outside of Natural. Variables of type HANDLE
OF GUI are also not mapped. There is no corresponding automation-compatible type. Therefore properties
of the type Control variable or HANDLE OF GUI cannot be accessed by clients through COM/DCOM.
Method parameters of these types should be marked as optional in the parameter data area, so that clients
can omit the parameters when calling the method through COM/DCOM.

47Copyright © Software AG 2002

Using Type InformationDistributing NaturalX Applications

OLE Types to Natural Types

This table shows how parameters or properties of an external class can be addressed by Natural. For example, if
an external class has a method parameter or property with format VT_R4, this parameter or property can be
addressed in Natural as F4 or with a format that is MOVE-compatible to F4.

Automation -Compatible Type Natural Data Type

VT_BOOL L

VT_BSTR A

VT_CY P15.4

VT_DATE T

VT_DISPATCH HANDLE OF OBJECT

VT_UNKNOWN HANDLE OF OBJECT

VT_I1 I1

VT_I2 I2

VT_I4 I4

VT_INT I4

VT_R4 F4

VT_R8 F8

VT_U1 B1

VT_U2 B2

VT_U4 B4

VT_UINT B4

A SAFEARRAY of up to three dimensions is converted into a Natural array with the same dimension count and
the corresponding format. SAFEARRAYs with more than three dimensions cannot be used from within Natural.

There are, however, some special cases:

A VT_BSTR maps either to a Natural Alpha variable or to a one-dimensional array of Natural Alpha
variables. The additional dimension is used to store strings longer than 253 characters.
A SAFEARRAY of VT_BSTRs maps either to an array of Natural Alpha variables with the same
dimension count, or to an array with one more dimension. The additional dimension is used to store strings
longer than 253 characters.
A SAFEARRAY of VT_UI1 can be mapped to any array of Natural binaries that has a matching total size.
This is because a SAFEARRAY of VT_UI1 is the way to transport binary data through a dispatch interface.

Copyright © Software AG 200248

Distributing NaturalX ApplicationsUsing Type Information

Configuration Overview
Once all classes of an application have been registered on the client and server machines, certain aspects of the
application’s behavior can be controlled and configured with system registry settings. This section summarizes
the relevant registry entries and their meaning for NaturalX applications. For detailed background information
about the registry keys and their administration, please refer to the specific DCOM registry documentation of the
appropriate platform.

The registry keys relevant in this context are maintained with commonly-used tools like DCOMCNFG or the
Registry Editor (REGEDIT). These tools present the registry keys in a different way. Therefore only the names
of the registry keys are mentioned here. The section Configuration Examples describes how to set registry keys.

Note:
HKLM is the common short form of the registry key HKEY_LOCAL_MACHINE, where HKCR stands for
HKEY_CLASSES_ROOT.

This section covers the following topics:

Server Configuration - General Settings
Server Configuration - Application-Specific Settings
Client Configuration - General Settings
Client Configuration - Application-Specific Settings

Server Configuration - General Settings

This section discusses general server configuration settings.

The registry entry HKLM\Software\Microsoft\OLE\EnableDCOM must be set to ’Y’ to enable access to the
server machine via DCOM.
If guests (users who do not have their own account on the server machine) are to be able to access
applications on the server machine, the predefined account Guest must be enabled in the User Manager
(Windows NT and Windows 2000 only).
The registry entries HKLM\Software\Microsoft\OLE\DefaultLaunchPermissions and
HKLM\Software\Microsoft\OLE\DefaultAccessPermissions define which users or groups are allowed or not
allowed to launch DCOM applications and to access their classes. The authorizations defined here apply for
all applications for which no application-specific settings are defined.
The registry entry HKLM\Software\Microsoft\OLE\LegacyAuthenticationLevel controls the level of
authentication that is performed for clients that access DCOM applications on this machine. If a NaturalX
server is to be able to pass the client’s user ID to Natural Security, the setting should be at least Connect.
Choose None if no authentication is to take place. In this case, the NaturalX server does not retrieve the
client’s user ID. Instead it performs each request under the user ID under which it was launched. If this
entry is defined differently on the client side and on the server side, the stricter setting applies.

49Copyright © Software AG 2002

Configuration OverviewDistributing NaturalX Applications

The registry entry HKLM\Software\Microsoft\OLE\LegacyImpersonationLevel controls how much
information a server may retrieve about the client, or if it may even use this information to act in the role of the
client against other servers. If a NaturalX server is to be able to pass the client’s user ID to Natural Security, the
setting should be at least Identify. The settings Impersonate or Delegate have the same effect for a NaturalX
server. Choose Anonymous, if the server is not to be able to retrieve the client’s user ID. In this case, the
server performs each request under the user ID under which it was launched. If this entry is defined differently
on the client side and on the server side, the stricter setting applies.

Server Configuration - Application-Specific Settings

The application-specific settings can be set up differently for each NaturalX application. But the question is
where to apply these settings. It is important to remember that all classes registered under one NaturalX server
ID form one application in the DCOM sense, and are thus assigned to one AppID key in the registry. This is why
the application-specific settings are applied under the AppID key.

The registry entries HKCR\AppID\<APPID>\LaunchPermission and
HKCR\AppID\<APPID>\AccessPermission define which users or groups are allowed or not allowed to
launch the DCOM application with the specified AppID and to access its classes.
The registry entry HKCR\AppID\<APPID>\RunAs defines the user account this NaturalX server will run
when it is launched by DCOM. There are three options:

Interactive user:
The NaturalX server is started under the account of the user that is interactively logged in on the server
machine. This is usually not desirable but can be useful for test reasons.
Launching user:
The NaturalX server is started under the account of the client that creates the first object on this server
(remember that the first request for an object forces DCOM to launch the server). This setting should
be used if each client is to be served by its own server process. Obviously, the client must have
permission to launch the server.
This user:
The server is started under the account of a given user. This setting should be used if all clients are to
be served by the same server process. The user entered here must have permission to launch the server.

Copyright © Software AG 200250

Distributing NaturalX ApplicationsServer Configuration - Application-Specific Settings

Client Configuration - General Settings

This section discusses general client configuration settings.

The registry key HKLM\Software\Microsoft\OLE\LegacyAuthenticationLevel controls the degree of
authentication that is performed for clients running on this machine when they access DCOM applications.
For a client that accesses a NaturalX server, a similar consideration to that inthe sectionServer
Configuration - General Settingsapplies: only if it specifies at least Connect, will the NaturalX server be
able to use its user ID against Natural Security. If this entry is defined differently on the client side and on
the server side, the stricter setting applies.
The registry key HKLM\Software\Microsoft\OLE\LegacyImpersonationLevel controls how much
information a server may retrieve about the client, or if it may even use this information to act in the role of
the client against other servers. For a client that accesses a NaturalX server, a similar consideration to that
inthe section Server Configuration - General Settings applies: only if it specifies at least Identify, will the
NaturalX server be able to retrieve its user ID and use it against Natural Security. If this entry is defined
differently on the client side and on the server side, the stricter setting applies.

Client Configuration - Application-Specific Settings

The application-specific settings can be set up differently for each NaturalX application. But the question is
where to apply these settings. Remember that all classes registered under one NaturalX server ID form one
application in the DCOM sense, and are thus assigned to one AppID key in the registry. This is why the
application-specific settings are applied under the AppID key.

The registry key HKCR\AppID\<APPID>\RemoteServerName defines on which remote machine DCOM
should start the server when a class hosted by this server is requested. If the server is to be started locally,
‘Run on this computer’ and no RemoteServerName must be specified.

Sample Application
On Windows 98/NT/2000, a sample application is provided in the library SYSEXNXX. For information on how
to run this application, see the A-README member in the library SYSEXNXX.

51Copyright © Software AG 2002

Sample ApplicationDistributing NaturalX Applications

Security with NaturalX
This section covers the following topics:

Overview
Activation Security
Call Security

Information on how to configure NaturalX is given in the section Configuration Examples.

Overview
In a distributed environment, security is an especially important topic. A server must be sure that no
unauthorized clients use the services it provides. A client must be sure that it is connected to the server it expects,
and that the server does not misuse its (the client’s) authorizations.

In the context of DCOM, two levels of security can be distinguished:

Activation security controls who is allowed to launch and access the server process that provides the class.
Call security controls who is allowed to use the individual methods a class provides.

In many cases, activation security may be sufficient to define authorizations. This security level is supported by
DCOM itself on the basis of Windows Security. The necessary authorizations are maintained in the system
registry. This is described in the section Activation Security.

In other cases it may be necessary to control authorizations in more detail at the level of individual methods. This
security level cannot be maintained with registry definitions. It is, therefore, provided by NaturalX with the help
of Natural Security. This is described in the section Call Security.

Activation Security
This section covers the following topics:

Applications
Authorizations using the Registry

Applications

Activation security controls who is allowed to launch and access a server process. In principle, this could be
done by defining authorizations for each individual class. For practical reasons, however, and to reduce
administration efforts, authorizations are normally maintained at the application level. In the system registry,
each application is defined by an AppID. The AppID is the key under which the authorizations for an application
are maintained. To maintain these authorizations, each DCOM enabled platform provides the tool DCOMCNFG.
This tool can be used for NaturalX applications as well as for other DCOM applications.

In order to understand the meaning of AppIDs in NaturalX, recall for a moment how NaturalX organizes classes
to applications (see the section Organizing Server IDs). With the Natural parameter COMSERVERID=server-ID
(for OS/390, DCOM=(SERVID=server-ID)), a name can be given to a certain NaturalX server. When Natural is
started with a given value of COMSERVERID=server-ID (for OS/390, DCOM=(SERVID=server-ID)), all
Natural classes that are registered during this Natural session are registered under this server ID. At the same
time, they are all registered under the same AppID key in the system registry. This means that each different
value of server-ID corresponds to a different AppID key in the system registry.

Copyright © Software AG 200252

Security with NaturalXSecurity with NaturalX

As an example, assume Natural is running with the server ID "Employees". All classes registered during this
Natural session will then form the "Employees" application. The REGISTER command registers them all under
one AppID key - the one that corresponds to the "Employees" application.

In the Registry Editor of EntireX DCOM for example, the application ID will appear as follows:

Authorizations using the Registry

When configuring Activation Security, the following registry keys are of interest: LaunchPermissions,
AccessPermissions, DefaultLaunchPermissions and DefaultAccessPermissions. The keys
DefaultLaunchPermissions and DefaultAccessPermissions exist only once in the registry and define
authorizations for all applications for which no individual authorizations have been defined. The keys
LaunchPermissions and AccessPermissions exist for each application (i.e. for each AppID) and define the
authorizations for an individual application.

Call Security
This section covers the following topics:

Authorizations using Natural Security
Security Hints and Suggestions

Authorizations using Natural Security

Call security is used to control who is allowed to use the individual methods that a class provides. Authorizations
on this level cannot be maintained by registry definitions. Call security is therefore provided by NaturalX with
the help of Natural Security.

53Copyright © Software AG 2002

Call SecuritySecurity with NaturalX

In order to understand how call security is achieved with Natural Security, consider how a class in NaturalX is
implemented: each class is a Natural module of type class, each method is a Natural module of type subprogram.
For all Natural modules, the execution can be controlled by authorizations defined in Natural Security. Please
refer to the Natural Security Manual for further information about how to do this.

The authorizations defined for class modules and method subprograms are evaluated whenever a class module is
used to create objects and whenever a method subprogram is executed in response to a method call. The
following rule applies: a user who is allowed to execute the class module is allowed to create objects of that
class, and a user who is allowed to execute a method subprogram is allowed to use the corresponding method.

In order to perform the necessary authorization checks, a NaturalX server must know the client’s user ID. It must
also be sure that the user ID is authentic. Therefore the following requirements must be met to use call security:

The client must have identified itself with a logon on its local machine or on a Windows domain server.
Authentication level must be set to at least Connect (either on the client or on the server machine).
Impersonation level must be set to at least Identify (either on the client or on the server machine).

If the above requirements are met, a NaturalX server that is going to process a request takes the client’s user ID
and places it into the Natural system variable *USER. The request is then performed under this user ID,
including all necessary Natural Security authorization checks. After having processed the request, the Natural
system variable *USER reverts to the value that it had at the startup of the NaturalX server.

If one of the requirements is not met, *USER remains unchanged during execution of the request. The request is
then executed under the user ID under which the NaturalX server was started.

In addition to *USER, also the system variable *NET-USER is filled during execution of a request. It contains
the user ID qualified with the domain name for clients belonging to a Windows domain and can be used for
additional application-specific security checks.

Copyright © Software AG 200254

Security with NaturalXAuthorizations using Natural Security

Security Hints and Suggestions

The following points should be taken into consideration when using NaturalX with Natural Security:

In a Natural Security environment, a NaturalX server must be started with the Natural parameter
AUTO=ON. This is because the authentication already takes place on the client side. The setting should be
entered in the Natural parameter module.
In a Natural Security environment, it is a good idea to let a NaturalX server always start under a specific
user ID. This user ID is then automatically used for all requests of unauthenticated users, and it is up to the
Natural Security administrator to define minimal authorizations for this user ID.
Remember that Natural and Natural Security cannot handle user IDs which are longer than 8 characters or
which contain blanks.

55Copyright © Software AG 2002

Security Hints and SuggestionsSecurity with NaturalX

NaturalX Configuration Examples
This section gives you an example of how to configure DCOM for NaturalX on each available platform,
providing examples for both client and server configuration.

This section covers the following topics:

DCOM Configuration on Windows NT/2000
DCOM Configuration on Windows 98
DCOM Configuration on Windows 98 in a Windows NT Domain
DCOM Configuration on UNIX
DCOM Configuration on OS/390

DCOM Configuration on Windows NT/2000
This section describes how to configure NaturalX applications on Windows NT and Windows 2000. All settings
are applied with the tool DCOMCNFG.

Configuring NaturalX Servers on Windows NT/2000
Configuring NaturalX Clients on Windows NT/2000

Copyright © Software AG 200256

NaturalX Configuration ExamplesNaturalX Configuration Examples

Configuring NaturalX Servers on Windows NT/2000

1. Invoke the Distributed COM Configuration Properties dialog box.
2. In the "Default Properties" tab, activate the checkbox "Enable Distributed COM on this computer".
3. Set "Default Authentication Level" to "Default" and "Default Impersonation Level" to "Identify".

57Copyright © Software AG 2002

Configuring NaturalX Servers on Windows NT/2000NaturalX Configuration Examples

This allows NaturalX servers to retrieve the client’s user ID. Before executing a request, the server will then
move the client’s user ID into the Natural system variable *USER in order to let Natural Security checks run
against this user ID.
Now you can set up the default security configuration.

4. In the "Default Security" tab, choose Edit Default in the Default Access Permissions box.
The Registry Value Permissions dialog box appears.

Copyright © Software AG 200258

NaturalX Configuration ExamplesConfiguring NaturalX Servers on Windows NT/2000

5. Use the Add function to define which users and groups can access NaturalX servers.

Note:
The registry value "DefaultAccessPermission" must contain at least the account SYSTEM.

In most cases you will define a group of all users to whom you want to grant access and enter this group
here. In the example, the built-in group "Everyone" is entered. This grants access to every user that is defined on
the server machine. If the built-in account "Guest" is enabled in the User Manager, this setting grants access to
users not defined on the server machine (guests) as well.

59Copyright © Software AG 2002

Configuring NaturalX Servers on Windows NT/2000NaturalX Configuration Examples

6. Edit the default launch permissions.
The registry value "DefaultLaunchPermission" must contain at least the accounts SYSTEM and
INTERACTIVE and the group Administrators.

Now you can set up the configuration for a specific NaturalX server.
7. In the "Applications" tab, locate your NaturalX server in the Applications list box (in the example "Natural

classes for Employees server").

Copyright © Software AG 200260

NaturalX Configuration ExamplesConfiguring NaturalX Servers on Windows NT/2000

8. Select your server and choose "Properties".

61Copyright © Software AG 2002

Configuring NaturalX Servers on Windows NT/2000NaturalX Configuration Examples

9. In the "Location tab", activate the checkbox "Run application on this computer".

Copyright © Software AG 200262

NaturalX Configuration ExamplesConfiguring NaturalX Servers on Windows NT/2000

10. In the "Security" tab, make sure that the access permissions are set to "Use default access permissions".
11. Activate the "Use custom launch permissions" check box and choose "Edit" to modify the

application-specific launch permissions.

The registry value "LaunchPermission" will contain at least the accounts SYSTEM and INTERACTIVE
and the group Administrators.

63Copyright © Software AG 2002

Configuring NaturalX Servers on Windows NT/2000NaturalX Configuration Examples

12. Add the users and groups to be allowed to launch your NaturalX server.
In most cases, you will define a group of all users to whom you want to grant launch and enter this group
here. In the example, the built-in group "Everyone" is entered. This grants launch to every user that is defined on
the server machine. If the built-in account "Guest" is enabled in the User Manager, this setting grants launch to
users not defined on the server machine (guests) as well.

13. In the "Identity" tab, define the account under which the NaturalX server will be launched.
If you select "The launching user", a server process will be launched for each client. The server process
will be launched under the account of the client user.
If you select "The interactive user", only one server process will be launched for all clients.

Note:
This is true only for classes that have been registered in Natural as "ExternalMultiple". If a class is
registered as "ExternalSingle", a server process is created for each object of this class that is created.

Copyright © Software AG 200264

NaturalX Configuration ExamplesConfiguring NaturalX Servers on Windows NT/2000

The server process will be launched under the account of the user that is interactively logged in on the
server machine. If no user is currently logged in on the server machine, this setting behaves like "The launching
user".

If you select "This user" and select a specific user account, only one server process will be launched
for all clients.

Note:
This is true only for classes that have been registered in Natural as "ExternalMultiple". If a class is
registered as "ExternalSingle", a server process is created for each object of this class that is created.

The server process will be launched under the specified user account.

65Copyright © Software AG 2002

Configuring NaturalX Servers on Windows NT/2000NaturalX Configuration Examples

Configuring NaturalX Clients on Windows NT/2000

1. Invoke the "Distributed COM Configuration Properties" dialog box.
2. In the "Default Properties" tab, activate the checkbox "Enable Distributed COM on this computer".
3. Set "Default Authentication Level" to "Default" and "Default Impersonation Level" to "Identify".

This allows NaturalX servers to retrieve the client’s user ID. Before executing a request, the server will then
move the client’s user ID into the Natural system variable *USER in order to let Natural Security checks
run against this user ID.

Now you can set up the configuration to access a specific NaturalX server.

Copyright © Software AG 200266

NaturalX Configuration ExamplesConfiguring NaturalX Clients on Windows NT/2000

4. In the "Applications" tab, locate your NaturalX server in the Applications list box (in the example "Natural
classes for Employees server").

5. Select your server and choose "Properties".
6. In the "Location" tab, activate the checkbox "Run application on the following computer".

67Copyright © Software AG 2002

Configuring NaturalX Clients on Windows NT/2000NaturalX Configuration Examples

7. Enter the name of the remote machine on which the NaturalX server is installed.

Copyright © Software AG 200268

NaturalX Configuration ExamplesConfiguring NaturalX Clients on Windows NT/2000

DCOM Configuration on Windows 98
This section describes how to configure NaturalX applications on Windows 98 in a pure Windows 98 network,
without a Windows NT domain server. All settings are applied with the tool DCOMCNFG.

Under Windows 98, DCOM is included. However, the tool DCOMCNFG might not be available in your
installation. In this case, it must be installed separately. This product is freely available from Microsoft.

DCOM on Windows 98 differs from DCOM on Windows NT in the following ways:

Windows 98 lacks the security infrastructure available under Windows NT. In a pure Windows 98 network,
no authenticated calls can be made. Therefore, NaturalX clients and servers must always run with
Authentication Level "None".
DCOM servers are not launched automatically. Therefore, NaturalX servers must be started manually in
advance.
Impersonation is not supported. Therefore, a NaturalX server always runs under the user account under
which it was started manually.

This section covers the following topics:

Configuring NaturalX Servers on Windows 98
Configuring NaturalX Clients on Windows 98

69Copyright © Software AG 2002

DCOM Configuration on Windows 98NaturalX Configuration Examples

Configuring NaturalX Servers on Windows 98

1. Invoke the "Distributed COM Configuration Properties" dialog box.
2. In the "Default Properties" tab, activate the checkbox "Enable Distributed COM on this computer". Set

"Default Authentication Level" to "None" and "Default Impersonation Level" to "Identify".

Copyright © Software AG 200270

NaturalX Configuration ExamplesConfiguring NaturalX Servers on Windows 98

3. In the "Default Security" tab, activate the checkbox "Enable remote connection" to allow clients to establish
remote DCOM connections to the server machine.

Now you can set up the configuration for a specific NaturalX server.

71Copyright © Software AG 2002

Configuring NaturalX Servers on Windows 98NaturalX Configuration Examples

4. In the "Applications" tab, select your NaturalX server in the ’Applications’ list box. Now you can set up the
configuration for a specific NaturalX server.
A bug in DCOMCNFG means that under certain conditions it does not show the name of the server (in the
example "Natural classes for Employees server"), but the name of one of the classes ("newemployee 1.0")
instead.

5. Choose "Properties".

Copyright © Software AG 200272

NaturalX Configuration ExamplesConfiguring NaturalX Servers on Windows 98

6. In the "Location" tab, activate the checkbox "Run application on this computer".

73Copyright © Software AG 2002

Configuring NaturalX Servers on Windows 98NaturalX Configuration Examples

Configuring NaturalX Clients on Windows 98

1. Invoke the "Distributed COM Configuration Properties" dialog box.
2. In the "Default Properties" tab, activate the check box "Enable Distributed COM on this computer". Set

"Default Authentication Level" to "None" and "Default Impersonation Level" to "Identify".

Now you can set up the configuration to access a specific NaturalX server.

Copyright © Software AG 200274

NaturalX Configuration ExamplesConfiguring NaturalX Clients on Windows 98

3. In the "Applications" tab, select your NaturalX server from the list of DCOM applications.
A bug in DCOMCNFG, means that under certain conditions it does not show the name of the server (in the
example "Natural classes for Employees server"), but the name of one of the classes ("newemployee 1.0")
instead.

4. Choose "Properties".
5. In the "Location" tab, activate the checkbox "Run application on the following computer".

75Copyright © Software AG 2002

Configuring NaturalX Clients on Windows 98NaturalX Configuration Examples

6. Enter the name of the remote machine on which the NaturalX server is installed.

Copyright © Software AG 200276

NaturalX Configuration ExamplesConfiguring NaturalX Clients on Windows 98

DCOM Configuration on Windows 98 in a Windows NT
Domain
This section describes how to configure NaturalX applications Windows 98, if a Windows NT domain server is
available in the network. All settings are applied with the tool DCOMCNFG.

Under Windows 98, DCOM is included. However, the tool DCOMCNFG might not be available in your
installation. In this case, it must be installed separately. This product is freely available from Microsoft.

DCOM Windows 98 differs from DCOM on Windows NT in the following ways:

Windows 98 lacks the security infrastructure available under Windows NT. Under Windows 98,
authenticated DCOM calls can be made only with the help of a Windows NT domain server. Therefore,
user-level access control must be activated on each Windows 98 machine that is to act as a server. This
allows the use of a Windows NT domain server to authenticate DCOM requests. See the Windows
98 documentation on how to activate user-level access control.
DCOM servers are not launched automatically. Therefore, NaturalX servers must be started manually in
advance.
Impersonation is not supported. Therefore, a NaturalX server runs always under the user account under
which it was manually started.

This section covers the following topics:

Configuring NaturalX Servers on Windows 98 in a Windows NT Domain
Configuring NaturalX Clients on Windows 98 in a Windows NT Domain

77Copyright © Software AG 2002

DCOM Configuration on Windows 98 in a Windows NT DomainNaturalX Configuration Examples

Configuring NaturalX Servers on Windows 98 in a Windows NT Domain

1. Invoke the "Distributed COM Configuration Properties" dialog box.
2. In the "Default Properties" tab, activate the checkbox "Enable Distributed COM on this computer".
3. Set "Default Authentication Level" to "Connect" and "Default Impersonation Level" to "Identify".

This allows NaturalX servers to retrieve the client’s user ID. Before executing a request, the server will then
move the client’s user ID into the Natural system variable *USER in order to let Natural Security checks
run against this user ID.

Now you can set up the default security configuration.

Copyright © Software AG 200278

NaturalX Configuration ExamplesConfiguring NaturalX Servers on Windows 98 in a Windows NT Domain

4. In the "Default Security" tab, activate the checkbox "Enable remote connection" to allow clients to establish
remote DCOM connections to the server machine.

79Copyright © Software AG 2002

Configuring NaturalX Servers on Windows 98 in a Windows NT DomainNaturalX Configuration Examples

5. Choose "Edit default" to edit the default access permissions in the Access Permissions dialog.
The "DefaultAccessPermission" must contain the users and groups that shall be allowed to access NaturalX
servers. In most cases you will define a group of all users to whom you want to grant access and enter this group
here. In the example, the built-in group "The World" is entered. This grants access to every user that is defined in
the domain. If the built-in account "Guest" is enabled in the User Manager on the domain server, this setting also
grants access to users not defined in the domain (guests).

Now you can set up the configuration for a specific NaturalX server.

Copyright © Software AG 200280

NaturalX Configuration ExamplesConfiguring NaturalX Servers on Windows 98 in a Windows NT Domain

6. In the "Applications" tab, locate your NaturalX server in the list.
A bug in DCOMCNFG means that under certain conditions it does not show the name of the server (in the
example "Natural classes for employees server"), but the name of one of the classes ("newemployee 1.0")
instead.

7. Select your server and choose "Properties".

81Copyright © Software AG 2002

Configuring NaturalX Servers on Windows 98 in a Windows NT DomainNaturalX Configuration Examples

8. In the "Location" tab, activate the checkbox "Run application on this computer".

Copyright © Software AG 200282

NaturalX Configuration ExamplesConfiguring NaturalX Servers on Windows 98 in a Windows NT Domain

9. In the "Security" tab, make sure that the access permissions are set to "Use default access permissions".

83Copyright © Software AG 2002

Configuring NaturalX Servers on Windows 98 in a Windows NT DomainNaturalX Configuration Examples

Configuring NaturalX Clients on Windows 98 in a Windows NT Domain

1. Invoke the "Distributed COM Configuration Properties" dialog box.
2. In the "Applications" tab, activate the checkbox "Enable Distributed COM on this computer".
3. Set "Default Authentication Level" to "Connect" and "Default Impersonation Level" to "Identify".

This allows NaturalX servers to retrieve the client’s user ID. Before executing a request, the server will
move the client’s user ID into the Natural system variable *USER in order to let Natural Security checks
run against this user ID.

Now you can set up the configuration to access a specific NaturalX server

Copyright © Software AG 200284

NaturalX Configuration ExamplesConfiguring NaturalX Clients on Windows 98 in a Windows NT Domain

4. In the"Application" tab, locate your NaturalX server in the list of DCOM applications.
A bug in DCOMCNFG means that under certain conditions it does not show the name of the server (in the
example "Natural classes for employees server"), but the name of one of the classes ("newemployee 1.0")
instead.

85Copyright © Software AG 2002

Configuring NaturalX Clients on Windows 98 in a Windows NT DomainNaturalX Configuration Examples

5. Select your server and choose "Properties....".
The "Natural Classes for employees server Properties" dialog box appears.

6. In the "Location" tab, activate the checkbox "Run application on the following computer".
7. Enter the name of the remote machine on which the NaturalX server is installed.

Copyright © Software AG 200286

NaturalX Configuration ExamplesConfiguring NaturalX Clients on Windows 98 in a Windows NT Domain

DCOM Configuration on UNIX with EntireX
This section describes how to configure NaturalX applications on UNIX under EntireX DCOM.

EntireX DCOM contains a command line utility DCOMCNFG that provides functions to configure DCOM
applications, similar to DCOMCNFG.EXE on Windows NT. For detailed documentation of this utility and for
more detailed information on DCOM Security on UNIX, see your EntireX DCOM documentation.

You can only use DCOMCNFG to give access and launch permissions to users which have already been defined
to EntireX DCOM. EntireX DCOM provides the following two methods of user authentification:

Using a local password file
Using a Windows NT domain server

For further information, see your EntireX DCOM documentation.

This section covers the following topics:

Configuring NaturalX Servers on UNIX
Configuring NaturalX Clients on UNIX

Configuring NaturalX Servers on UNIX

1. Enable DCOM on the server machine as in the following example:

dcomcnfg EnableDCOM=Y
 dcomcnfg LegacyAuthenticationLevel=Default
 dcomcnfg LegacyImpersonationLevel=Identify

Setting "LegacyAuthenticationLevel" to "Default" and "LegacyImpersonationLevel" to "Identify" allows
NaturalX servers to retrieve the client’s user ID. Before executing a request, the server will move the
client’s user ID into the Natural system variable *USER in order to let Natural Security checks run against
this user ID.

Now you can set up the "Default Security" configuration.

2. Set the default access permissions. This defines which users and groups can access NaturalX servers. In
most cases you will define a group of all users to whom you want to grant access and enter this group here.
In the example, the built-in group "Everyone" is entered. This grants access to every user that is defined on
the server machine.

dcomcnfg DefaultAccessPermission=Everyone

Set the default launch permissions. This defines which users and groups can launch NaturalX servers. The
registry value "DefaultLaunchPermission" must contain at least the account "System"

dcomcnfg DefaultLaunchPermission=System

3. Run the command dcomcnfg without parameters.
This lists among other information all defined AppIDs.

4. Select the AppID of your NaturalX server.
5. Specify that the NaturalX server will run on this machine (the server machine).

dcomcnfg "{088726A0-4718-11D2-BF75-080020789C1E}" RemoteServerName="This computer"

Note:
This command must be entered in one line.

87Copyright © Software AG 2002

DCOM Configuration on UNIX with EntireXNaturalX Configuration Examples

6. Define who shall be allowed to launch your NaturalX server.

In most cases you will create a group containing all users to whom you want to grant launch and enter this
group here. In the following example the built-in group "Everyone" is entered. This allows launch to every user
defined on the server machine:

dcomcnfg "{088726A0-4718-11D2-BF75-080020789C1E}"LaunchPermission=Everyone

7. Define the account under which the NaturalX server shall be launched.

If you select "Launching User", an own server process will be launched for each different client. The server
process will be launched under the account of the client user.

dcomcnfg "{088726A0-4718-11D2-BF75-080020789C1E}" RunAs="Launching User"

If you select a specific user account, only one server process will be launched for all clients. Note that this is
true only for classes that have been registered in Natural as "ExternalMultiple". If a class is registered as
"ExternalSingle", an own server process is created anyway for each object that is created of this class. The
server process will be launched under the specified user account.

dcomcnfg "{088726A0-4718-11D2-BF75-080020789C1E}" RunAs=Scully

OS/390 UNIX Services Only

If you select a specific user account, only one server process will be launched for all clients. This is the
recommended setting for NaturalX under OS/390. NaturalX separates classes with the activation policies
"ExternalSingle" and "ExternalMultiple" in different Natural sessions.

Copyright © Software AG 200288

NaturalX Configuration ExamplesConfiguring NaturalX Servers on UNIX

Configuring NaturalX Clients on UNIX

1. Enable DCOM on the server machine.

Setting "LegacyAuthenticationLevel" to "Default" and "LegacyImpersonationLevel" to "Identify" allows
NaturalX servers to retrieve the client’s user ID. Before executing a request, the server will then move the
client’s user ID into the Natural system variable *USER in order to let Natural Security checks run against
this user ID.

dcomcnfg EnableDCOM=Y
 dcomcnfg LegacyAuthenticationLevel=Default
 dcomcnfg LegacyImpersonationLevel=Identify

Now you can set up the application-specific configuration.

2. Run the command dcomcnfg without parameters.
This lists among other information all defined AppIDs.

3. Select the AppID of your NaturalX server.
4. Enter the name of the remote machine on which the NaturalX server is installed.

dcomcnfg "{088726A0-4718-11D2-BF75-080020789C1E}"RemoteServerName="volcano.iceland.com"

Note:
This command must be entered in one line.

DCOM Configuration on OS/390
See the section DCOM Configuration on UNIX

89Copyright © Software AG 2002

DCOM Configuration on OS/390NaturalX Configuration Examples

NaturalX System Registry Entries
This section covers the following topics:

Registry Entries for Servers
Registry Entries for Clients

Registry Entries for Servers
The following tables show a summary of the keys and values that are added in the system registry of the server
when a new class is registered.

The column "parent key" shows under which key the new key is created. The key which is added is listed in the
column "subkey", and the columns "value name" and "value" show the value of the new entry.

Note:
<class_name> and <class_ID> are the name and the class GUID of the class respectively. They are defined
in the DEFINE CLASS statement of the class module.

Keys Needed by DCOM
Keys Needed by Natural

Copyright © Software AG 200290

NaturalX System Registry EntriesNaturalX System Registry Entries

Keys Needed by DCOM

parent key
(HKEY_CLASSES_ROOT...)

subkey value
name

value

... <ProgID>
(<class_name>.1)

- <class_name> "1.0"

... \<ProgID> CLSID - <class_GUID>

... <VersIdProgID>
(<class_name>)

- <class name> "1.0"

... \<VersIdProgID> CLSID - <class GUID>

... \AppId <APPID> - "Natural classes for "
<server_ID> "server"

... \CLSID <CLSID> - <class_name> "1.0"

... \CLSID <CLSID> AppId <GUID for server>

... \CLSID \<CLSID> LocalServer32 - <Natural path>

... \CLSID \<CLSID> ProgID - <ProgID>

... \CLSID \<CLSID> TypeLib - <GUID for type library>

... \CLSID \<CLSID> Version - "1.0"

... \CLSID \<CLSID> VersionIndepen-
dentProgID

- <VersIDProgID>

... \CLSID \<CLSID>
(applies for Version 4.1.2 and all subsequent
releases)

Programmable - -

... \TypeLib <TLID> - -

... \TypeLib\<TLID> 1.0 <version> - "Natural"
<class_name> "class"

... \TypeLib\<TLID>\1.0 0 (langcode) - -

... \TypeLib\<TLID>\1.0\0 win32 (platform) <type library path>

For every interface:

... \Interface <IID> - <interface name>

... \Interface\<IID> ProxyStubClsid32 - <GUID of proxy dll for
IDispatch>

... \Interface\<IID> BaseInterface - <GUID of IDispatch>

91Copyright © Software AG 2002

Keys Needed by DCOMNaturalX System Registry Entries

Keys Needed by Natural

parent key
(HKEY_LOCAL_MACHINE\
SOFTWARE\SoftwareAG\
Natural\Servers...)

subkey value name value

... <server_ID> AppId <GUID for server>

... \<server_ID>\ CLSID - -

... \<server_ID>\CLSID <CLSID>
(<class_ID>)

NatMember <Natural class module
name>

... \<server_ID>\CLSID <CLSID> NatLibrary <Natural library of
class module>

... \<server_ID>\CLSID <CLSID> NatContext "ExternalSingle" or
"InternalMultiple" or
"ExternalMultiple"
(see Activation Policies)

Copyright © Software AG 200292

NaturalX System Registry EntriesKeys Needed by Natural

Registry Entries for Clients
The following table shows the keys which are added in the client system registry when the client registration file
is executed:

parent key
(HKEY_CLASSES_ROOT...)

subkey value name value

... <ProgID>
(<class_name>.1)

- <class_name>
"1.0"

... \<ProgID> CLSID - <class GUID>

... <VersIdProgID>
(<class_name>)

- <class_name>
"1.0"

... \<VersIdProgID> CLSID - <class GUID>

... \<VersIdProgID> CurVer - <ProgID>

... \AppId <APPID> - "Natural classes
for server"
<server_
ID> "server"

... \AppId <APPID> RemoteServerName has to be entered
by
user

... \CLSID <CLSID> - <class_name>
"1.0"

... \CLSID <CLSID> AppId <GUID for
server>

... \CLSID \<CLSID> ProgID - <ProgID>

... \CLSID \<CLSID> Version - "1.0"

... \CLSID \<CLSID> VersionIndependent
ProgID

- <VersProgID>

... \CLSID \<CLSID>
(applies for Version 4.1.2 and all subsequent
releases)

Programmable - -

For every interface:

... \Interface <IID> - <interface name>

... \Interface\<IID> ProxyStubClsid32 - <GUID of proxy
dll
for IDispatch >

... \Interface\<IID> BaseInterface - <GUID of IDis-
patch>

93Copyright © Software AG 2002

Registry Entries for ClientsNaturalX System Registry Entries

Using Statements and Commands in a
NaturalX Server Environment
The behaviour of some Natural statements and Natural system commands changes in a server environment. This
section covers the following topics:

Natural Statements
Natural System Commands

Natural Statements
This section covers the following statements:

DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements
WRITE WORK FILE and READ WORK FILE Statements
STOP and TERMINATE Statements

DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements

Output to a screen (output to Report 0) is not appropriate in a server environment, and in some cases is not
possible. Therefore, in the case of an interactive I/O in the server environment, the error NAT0723 is
returned to the client. Redirecting the I/O by using the MAINPR parameter is, of course, possible and is
fully supported.
When output is written to a report by a method, the report is opened at the start of the method and closed at
the end. The report is not kept open between method calls to avoid interference between clients.

OS/390

Open/close processing is controlled by the OPEN/CLOSE option of the corresponding PRINTER/WORK
parameter definition. This means that files may be kept open between method calls. Shared print/work files are
closed at server termination only.

Note:
Print/work files whose name starts with the letters ’CM’ are shared.

Copyright © Software AG 200294

Using Statements and Commands in a NaturalX Server EnvironmentUsing Statements and Commands in a NaturalX Server Environment

WRITE WORK FILE and READ WORK FILE Statements

Windows 98/NT/2000 and UNIX

When you access a work file in a method, the file is opened at the start of the method and closed at the end.
The file is not kept open between method calls to avoid interference between clients.

OS/390

Shared Files

Shared files are opened at first access and remain open until the entire server process terminates.

Exclusive Files

CLOSE=FIN
The work file remains open as long as the Natural session hosts objects. When the last object is released, the
session terminates and closes the files.
CLOSE=USR
The work file remains open until it is either closed explicitly by a CLOSE WORKFILE statement or until
the session terminates.
CLOSE=CMD
The work file is closed after each method execution.

STOP and TERMINATE Statements

The behaviour of the TERMINATE statement matches that of the STOP statement. Processing of return
values is not supported.
The STOP and TERMINATE statements behave in the same way as the ESCAPE ROUTINE statement
during method execution. Method execution is terminated immediately without producing any return value.

Natural System Commands
Only the following Natural commands are allowed in the server environment:

CLEAR
EXECUTE
LOGOFF
LOGON
READ
RETURN
RUN
SETUP

All other commands will be rejected with the error NAT0082.

95Copyright © Software AG 2002

Natural System CommandsUsing Statements and Commands in a NaturalX Server Environment

NaturalX Glossary
This glossary explains the terminology used in this documentation.

Activation Policies
An activation policy is an attribute of a NaturalX class which defines whether it runs within its own exclusive
Natural session or whether it may share a Natural session with other classes.

NaturalX combines the different options supported by DCOM in the form of the following three activation
policies:

ExternalMultiple
ExternalSingle
InternalMultiple

The activation policy of a class can be set as part of the REGISTER command, in the DEFINE CLASS statement
or with the profile parameter ACTPOLICY=activation-policy (for OS/390,
DCOM=(ACTPOL=activation-policy)).

AppID
In the system registry, each application is represented by an AppID. The AppID is a globally unique ID which
can be found under the registry key HKEY_CLASSES_ROOT\AppID. DCOM uses the AppID to group classes
to applications. Also, for example, security settings are defined on the basis of the AppID. Natural creates for
each server ID one AppID in the registry.

For further information, see the section Server ID.

Class
Following the object-based programming approach, NaturalX classes encapsulate data structures (objects) with
corresponding functionality (methods).

The internal structure of the objects of a class object is defined with a data area (object data area). The methods
of a class are implemented as subprograms.

NaturalX classes can be made known to DCOM using the Natural command REGISTER, after which they are
accessible in a network.

Classes can be internal, external, or local.

For further information on classes, see the sections Programming Techniques, Defining Classes, Using Classes
and Objects, and Internal, External and Local Classes.

Class GUID
If a Natural class is to be registered as a DCOM class, a globally unique ID (GUID) must be defined for the
class, to make sure it can be unambiguously identified in a network. In Natural, a GUID is assigned to a class in
the ID clause of the DEFINE CLASS statement. A GUID is represented by an alphanumeric constant which can
be generated in the data area editor.

Copyright © Software AG 200296

NaturalX GlossaryNaturalX Glossary

Class Name
The name defined in the class-name operand in the DEFINE CLASS statement. This name is used in the
CREATE OBJECT statement to create objects of that class.

Class Module Name
The name of the Natural module in which a Natural class is defined.

COM
Component Object Model. Microsoft specification for binary component API. Standardizes communication
between components on a binary level. This component software model specifies how software components
interact, irrespective of the programming language in which they were implemented.

For further information, see the Microsoft COM specification.

COM Class
A class that makes its methods and properties available to clients through interfaces that comply with the COM
specification.

For further information, see the section COM.

DCOM
Distributed Component Object Model. DCOM extends COM to a distributed component software model which
specifies how software components interact in a distributed environment.

With EntireX DCOM, Software AG has also made the DCOM technology available on UNIX and mainframe
platforms.

97Copyright © Software AG 2002

Class NameNaturalX Glossary

External Class
A Natural class can be a local, an internal or an external class. This depends on the way the class was registered.
An external class is a class that has been registered as a DCOM class with the REGISTER command option
ExternalSingle (ES) or ExternalMultiple (EM). Objects of external classes can be created and accessed by other
processes. (With Natural on Windows 98/NT/2000 and UNIX, objects of external classes can also be created in
the client process, provided the client process is at the same time a server process for the class.)

For further information, see the sections Local Class and Internal Class.

GUID
A GUID (globally unique identifier) is a constant that is guaranteed to be unique worldwide in the COM/DCOM
model. It is used to unambiguously identify classes and their interfaces in a network. If a Natural class is to be
registered as DCOM class, a GUID must be assigned to the class and to each of its interfaces. In Natural, a
GUID is represented by an alphanumeric constant which can be generated in the data area editor.

For further information, see the section Globally Unique Identifiers (GUIDs).

HFS
Hierarchical File System. - UNIX file system available with OS/390 UNIX Services.

Instance
In the object-oriented programming model, data structures and functions (so called methods) are packaged
together in objects. Each object belongs to a class, which describes the internal structure of the object and its
interfaces, properties and methods. If an object belongs to a certain class, it is also called an instance of that
class.

Interface
Interfaces are used by classes to provide clients with services. An interface is a collection of methods and
properties. A client accesses these services by creating an object of the class and using the methods and
properties of its interfaces.

You define an interface as follows:

Define the INTERFACE clause to specify an interface name.
Define the properties of the interface with PROPERTY definitions.
Define the methods of the interface with METHOD definitions.

Copyright © Software AG 200298

NaturalX GlossaryExternal Class

Interface GUID
If a Natural class is to be registered as a DCOM class, a globally unique ID (GUID) must be defined for each of
its interfaces, to make sure the interfaces can be unambiguously identified in a network. The GUID is assigned to
an interface in the ID clause of the INTERFACE statement. In Natural, a GUID is represented by an
alphanumeric constant, which can be generated in the Data Area Editor.

Interface Inheritance
Interface inheritance means giving different classes the same interfaces, but implementing the interfaces
differently in the different classes. This makes it possible to write client programs that only rely on these
interfaces and are able to work with any class that has these interfaces.

Internal Class
A Natural class can be a local, an internal or an external class. This depends on the way the class was registered.
An internal class is a class that has been registered as a DCOM class with the REGISTER command option
InternalMultiple (IM). Objects of internal classes can not be created by other processes, but they can be accessed
by other processes. This requires that the object has been passed to the client process for example as return value
of a method.

For further information, see the sections Local Class and External Class.

Local Class
A Natural class can be a local, an internal or an external class. This depends on the way the class was registered.
A local class is a class that has not been registered as a DCOM class. Therefore, objects of local classes can
neither be created nor accessed by other processes, but only by programs in the current Natural session.

For further information, see the sections Internal Class and External Class.

Method
A method is a function that an object/instance of a class can perform when requested by a client.

NaturalX Client
A NaturalX client is a process which creates or accesses NaturalX objects.

99Copyright © Software AG 2002

Interface GUIDNaturalX Glossary

NaturalX Server
A NaturalX server is a process which manages one (Windows 98/NT/2000 and UNIX) or multiple (OS/390)
Natural sessions. The Natural sessions managed by a NaturalX server are used to host COM objects.

Natural Session
A Natural session is the user-dependent Natural runtime context required for the Natural runtime system to
execute Natural programs.

Object
In the object-oriented programming model, data structures and functions (so-called methods) are packaged
together in objects. Each object belongs to a class, which describes the internal structure of the object and its
interfaces, properties and methods.

Object Data Area - ODA
The object data area is the place where the current values of all properties of an object are stored. Also other
variables can be defined in the object data area, which are not accessible by clients as properties, but just used by
the methods of the object to maintain an internal state of the object. The structure of the object data area of all
objects of one class is specified in the OBJECT USING clause in the DEFINE CLASS statement. An object data
area is nothing else than a local data area, and in fact it is also created in the data area editor as a local data area.

Object Data Variable
Each property needs a variable in the object data area of the class to store its value - this is referred to as the
object data variable.

ProgID
The ProgID (programmatic identifier) of a DCOM class is a meaningful name by which the class is identified in
client programs. For Natural classes, the name defined in the class-name operand in the DEFINE CLASS
statement is written into the registry as a ProgID when the class is registered as a DCOM class with the
REGISTER command.

Property
Properties are attributes of an object that can be accessed by clients. In Natural classes, property values of an
object are stored in the object data area. Therefore an object data variable must be assigned to each property.

For further information, see the section Object Data Variable.

Copyright © Software AG 2002100

NaturalX GlossaryNaturalX Server

Registry
A repository containing operating system information. The registry also contains information about DCOM
classes and their assignment to servers.

Registry Key
Registry keys are entries made in the system registry of the server when a class is registered. Registry keys are
also added in the client system registry when the client registration file is executed.

For detailed background information about the registry keys and their administration, please refer to the registry
documentation of the appropriate platform.

Server ID
A server ID is a character string that identifies a NaturalX server. The server ID is a Natural-owned key in the
system registry, keeping together all classes that belong to a given NaturalX server. It is an arbitrary
alphanumeric string of 32 characters which does not contain blanks and which is not case sensitive. The server
ID is defined with the Natural parameter COMSERVERID=serverid (for OS/390, DCOM=(SERVID=serverid)).

Type Information
When a Natural class is registered as a DCOM class, a type library is generated for the class and connected to the
class by a registry entry. Clients can use the type information contained in the type library to check the
descriptions of the interfaces, methods and properties of the class either at compile time or at runtime.

Type Library
When a Natural class is registered as a DCOM class, a type library is generated for the class and connected to the
class by a registry entry. Clients can use the type information contained in the type library to check the
descriptions of the interfaces, methods and properties of the class either at compile time or at runtime.

101Copyright © Software AG 2002

RegistryNaturalX Glossary

	Cover Page
	page 2

	Table of Contents
	NaturalX - Overview
	Introduction to NaturalX
	Why NaturalX?
	Programming Techniques
	Object-Based Programming
	Defining Classes
	Defining Interfaces
	Interface Inheritance

	Installing NaturalX
	Installing NaturalX under Windows 98/NT/2000
	Installing NaturalX under UNIX
	Prerequisites
	Environment Variables

	Installation Procedure
	Step 1 - Perform the General Installation Procedure for Software AG Products for UNIX
	Step 2 - Execute the NaturalX Installation Script

	NaturalX System Architecture under OS/390
	Overview
	NaturalX Server
	NaturalX Client

	Environment Variables
	Starting Natural under TSO or Batch
	Starting NaturalX Servers Manually
	Starting NaturalX Servers from EntireX DCOM
	List of NaturalX Environment Variables
	DCOLIB - C
	NATDIR - C/S
	NATVERS - C/S
	NATX_DELAY
	NATX_DYNALLOC
	NATX_FEOPT - S
	NATX_FEPRM
	NATX_INITTOUT
	NATX_NTHREADS - S
	NATX_NUCNAME - S
	NATX_THREADSZE - S
	NATX_TRACE - S
	PATH - C/S
	STEPLIB - S

	NaturalX Server Front-End
	NaturalX Output Files
	The NaturalX Server Monitor
	natxmon pid message

	The DCOM Buffer Pool

	Installing NaturalX under OS/390

	Developing NaturalX Applications
	Using the Class Builder
	Defining Classes
	Creating a Natural Class Module
	Specifying a Class
	Defining an Interface
	Assigning an Object Data Variable to a Property
	Assigning a Subprogram to a Method
	Implementing Methods

	Using Classes and Objects
	Defining Object Handles
	Creating an Instance of a Class
	Invoking a Particular Method of an Object
	Accessing Properties
	Object Handle - operand1
	operand2
	property-name

	Sample Application

	*THIS-OBJECT System Variable

	Distributing NaturalX Applications
	General
	Internal, External and Local Classes
	Internal Classes
	External Classes
	Windows 98/NT/2000 and UNIX
	OS/390
	All Platforms
	Local Classes

	Globally Unique Identifiers - GUIDs
	Using the Class Builder
	Using the Data Area Editor

	NaturalX Servers
	COM Classes and Servers
	NaturalX Classes and Servers
	NaturalX Servers and Natural Sessions under OS/390
	Starting NaturalX Servers

	NaturalX Servers and Natural Sessions under Windows 98/NT/2000 and UNIX
	The Role of the Server ID
	Organizing Server IDs

	Activation Policies
	Activation Policies Under Windows 98/NT/2000 and UNIX
	Activation Policies Under OS/390
	Setting Activation Policies
	When to use which Activation Policy
	Class SagTours
	Method newTrip
	Class RoutePlanner
	Method plan
	Sample Client Program

	Registration
	Registration with Natural
	Automatic Registration
	Manual Registration
	The REGISTER Command
	class-module-name
	library-name
	ES IM EM
	The UNREGISTER Command
	class-module-name
	library-name
	server-ID

	Registration Files and Type Library
	Client Registration
	Registration Hints

	DCOMPARM System Command - OS/390 Only
	server-ID

	Type Information
	Overview
	NaturalX and Type Information
	Creating Type Information

	Using Type Information
	Data Type Conversions

	Configuration Overview
	Server Configuration - General Settings
	Server Configuration - Application-Specific Settings
	Client Configuration - General Settings
	Client Configuration - Application-Specific Settings

	Sample Application

	Security with NaturalX
	Overview
	Activation Security
	Applications
	Authorizations using the Registry

	Call Security
	Authorizations using Natural Security
	Security Hints and Suggestions

	NaturalX Configuration Examples
	DCOM Configuration on Windows NT/2000
	Configuring NaturalX Servers on Windows NT/2000
	Configuring NaturalX Clients on Windows NT/2000

	DCOM Configuration on Windows 98
	Configuring NaturalX Servers on Windows 98
	Configuring NaturalX Clients on Windows 98

	DCOM Configuration on Windows 98 in a Windows NT Domain
	Configuring NaturalX Servers on Windows 98 in a Windows NT Domain
	Configuring NaturalX Clients on Windows 98€ in a Windows NT Domain

	DCOM Configuration on UNIX with EntireX
	Configuring NaturalX Servers on UNIX
	Configuring NaturalX Clients on UNIX

	DCOM Configuration on OS/390

	NaturalX System Registry Entries
	Registry Entries for Servers
	Keys Needed by DCOM
	Keys Needed by Natural

	Registry Entries for Clients

	Using Statements and Commands in a NaturalX Server Environment
	Natural Statements
	DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements
	OS/390

	WRITE WORK FILE and READ WORK FILE Statements
	Windows 98/NT/2000 and UNIX
	OS/390
	Shared Files
	Exclusive Files

	STOP and TERMINATE Statements

	Natural System Commands

	NaturalX Glossary
	Activation Policies
	AppID
	Class
	Class GUID
	Class Name
	Class Module Name
	COM
	COM Class
	DCOM
	External Class
	GUID
	HFS
	Instance
	Interface
	Interface GUID
	Interface Inheritance
	Internal Class
	Local Class
	Method
	NaturalX Client
	NaturalX Server
	Natural Session
	Object
	Object Data Area - ODA
	Object Data Variable
	ProgID
	Property
	Registry
	Registry Key
	Server ID
	Type Information
	Type Library

